Estrés por salinidad en el arroz, retos y oportunidades
Palabras clave:
Arroz, Salinidad , CultivosSinopsis
La comprensión del fenómeno de la salinidad y como las tensiones abióticas tienen una profunda influencia en los sistemas ecológicos y agrícolas que provocan una enorme pérdida en la producción de los cultivos sigue siendo incompleta.
Descargas
Citas
Abbas, G., Saqib, M., Akhtar, J., (2015). Interactive effects of salinity and iron deficiency on different rice genotypes. J. Plant Nutr. Soil Sci. 178, 306-311.
Abdallah, M.S., Abdelgawad, Z.A., El-Bassiouny, H.M.S., (2016). Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. South Afr. J. Bot. 103, 275-282.
Abdelgadir, E.M., Oka, M., Fujiyama, H., (2005). Characteristics of nitrate uptake by plants under salinity. J. Plant Nutr. 28, 33-46.
Abdula, S.E., Lee, H.J., Ryu, H., Kang, K.K., Nou, I., Sorrells, M.E., et al., (2016). Overexpression of BrCIPK1 gene enhances abiotic stress tolerance by increasing proline biosynthesis in rice. Plant Mol. Biol. Rep. 34, 501-511.
Abu-Sharar, T. M., Bingham F. T. and Rhoades J. D. (1987). Stability of Soil Aggregates as Affected by Electrolyte Concentration and Composition. Soil Science Society of America Journal, 51 (2) 309-314. Recuperado de https://dl.sciencesocieties.org/publications/sssaj/abstracts/51/2/SS0510020309.
Agarwal P., Reddy M. y Sopory S. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25: 1263–1274.
Akbar M, Yabuno T (1977) Breeding for saline-resistant varieties of rice inheritance of delayedtype panicle sterility induced by salinity. Japan J Breed 27:237–240
Alconada M. (2008). Procesos de inundación en el sector de médanos longitudinales al noroeste de la provincia de Buenos Aires, Argentina su relación con la vegetación, suelo, agua y clima. Opciones de desarrollo. (Tesis Doctoral del Posgrado en Geografía de la UNAM Universidad Nacional Autónoma de México). 528 p y anexos. Recuperado de Biblioteca UNAM.
Alconada Magliano, M. M., Damiano, F. y Fagundo Castillo, J. R. (2016). Estudio del suelo en el paisaje regional como base para definir su manejo agropecuario–forestal. Actas XXV Congreso Argentino Ciencies del Suelo. Río Cuarto. Córdoba.
Alconada Magliano, M.M., Cuellas M., Poncetta P., Barragán S., Inda E, y Mitidieri A. (2011b). El cultivo de tomate protegido:1-Nutrición nitrogenada. Efectos en el suelo y la producción. Revista Horticultura Argentina, Asociación Argentina de Horticultura, 30: (72), 5-13. Recuperado de http://www.horticulturaar.com.ar/publicaciones-15.htm.
Alconada, M., Giuffre L., Huergo L., y Pascale C. (2000). Hiperfertilización con fósforo de suelos Vertisoles y Molisoles en cultivo de tomate protegido Avances en Ingeniería Agrícola: 343–347. Buenos Aires: Editorial Facultad de Agronomía, UBA.
Ali, I., Jan, M., Wakeel, A., Azizullah, A., Liu, B., Islam, F., et al., (2017). Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thialiana subjected to bisphenol A exposure. Ecotoxicol. Environ. Saf. 144, 62-71.
Ali, I., Liu, B., Farooq, M.A., Islam, F., Azizullah, A., Yu, C., et al., (2016). Toxicological effects of bisphenol A on growth and antioxidant defense system in Oryza sativa as revealed by ultrastructure analysis. Ecotoxicol. Environ. Saf. 124, 277-284.
Alvarez, J.M., Rocha, J.F., Machado, S.R., (2008). Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): structure in relation to function. Braz. Arch. Biol. Technol. 51, 113-119.
Aristizabal Arboleda, A. J. (2009). Efecto de altas saturaciones de Mg+2 y Ca+2 en las propiedades físicas de un suelo del Valle del Cauca (Tesis Maestria Cs Agrarias, Universidad de Colombia). Recuperado de http://www.bdigital.unal.edu.co/1794/1/7005002.2009.pdf.
Arzate A, Hoyos A, Vázquez L, Gutiérrez M. (2008). Caracterización isoenzimática de nueve variedades botánicas de Tigridia pavonia (L. f.) DC. Agrociencia, 42:519-528.
Ashraf M, Harris P J. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica. 51(2):163-190.
Atkinson NJ and Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63 3523–3543.
Banu, M.S.A., Huda, K.M.K., Sahoo, R.K., Garg, B., Tula, S., Islam, S.S., et al., (2015). Pea p68 imparts salinity stress tolerance in rice by scavenging of ROS-mediated H2O and interacts with argonaute. Plant Mol.Biol. Rep. 33, 221-238.
Batista D, Murillo B, Nieto A, Alcaráz L, Troyo E, Hernández L, Ojeda, C. (2017). Mitigación de NaCl por efecto de un bioestimulante en la germinación de Ocimum basilicum L. Terra Latinoamericana. 35:309-320.
Batley J and Edwards D (2016) The application of genomics and bioinformatics to accelerate crop improvement in a changing climate. Curr. Opin. Plant Biol. 30 78–81.
Biswas, M.S., Mano, J.I., (2015). Lipid peroxide-derived short-chain carbonyls mediate hydrogen peroxide induced and salt-induced programmed cell death in plants. Plant Physiol. 168, 885-898.
Bohn, H.L., Mc Neal B.L. y. O´Connor G.A. (1993). Química del suelo. México: Ed. Limusa. 370 p.
Burke E., Brown S. y Christidis N. (2006). Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. Journal Hydrometeor, 7: 1113–1125.
Cabello, J.V., Lodeyro, A.F., Zurbriggen, M.D., (2014). Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr. Opin. Biotechnol. 26, 62-70.
Cai, H., Zhou, Y., Xiao, J., Li, X., Zhang, Q., Lian, X., (2009). Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 28, 527-537.
Cameron, K.D., Teece, M.A., Smart, L.B., (2006). Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 140, 176-183.
Caro Fernández, M. (1965). Suelos salinos y procesos de salinización en el sureste español. Universidad de Murcia, España, 65p. Recuperado de http://digitum.um.es/xmlui/bitstream/10201/4867/1/Suelos%20salinos%20y%20procesos%20de%20salinizaci%C3%B3n%20en%20el%20Sureste%20espa%C3%B1ol.pdf.
Chawla, S., Jain, S., Jain, V., (2013). Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J. Plant Biochem. Bioethanol. 22, 27-34.
Chen, G., Hu, Q., Luo, L.E., Yang, T., Zhang, S., Hu, Y., et al., (2015a). Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ. 38, 2747-2765.
Chen, T.W., Kahlen, K., Stutzel, H., (2015b). Disentangling the contributions of osmotic and ionic effects of salinity on stomatal, mesophyll, biochemical and light limitations to photosynthesis. Plant Cell Environ. 38, 1528-1542.
Cobos F, (2022). Identificación de líneas tolerantes en poblaciones segregantes de arroz como alternativa en el manejo sustentable de suelos degradados por salinidad. Universidad Nacional Agraria la Molina, Perú, 153 pp. https://hdl.handle.net/20.500.12996/5367.
Cobos F, (2022). Identificación de líneas tolerantes en poblaciones segregantes de arroz como alternativa en el manejo sustentable de suelos degradados por salinidad. Universidad Nacional Agraria la Molina, Perú, 153 pp. https://hdl.handle.net/20.500.12996/5367.
Cobos Mora, F., Gómez Pando, L., Reyes Borja, W., & Hasang Moran, E. (2020). Evaluación de la tolerancia a la salinidad en poblaciones segregantes F5 de arroz (Oryza sativa L.). Journal of Science and Research, 5(CININGEC), 1–23. Recuperado a partir de https://revistas.utb.edu.ec/index.php/sr/article/view/995.
Cobos Mora, F., Gómez Pando, L., Reyes Borja, W., Hasang Moran, E., Ruilova Cueva, M., & Duran-Canare, P. L. (2021). Effects of salinity levels in Oryza sativa in different phenological stages under greenhouse conditions. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(1), e223905. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/37392.
Cobos Mora, F., Gómez Villalva, J., Hasang Moran, E., & Medina Litardo, R. (2020). Sostenibilidad del cultivo del arroz (Oryza sativa L.) en la zona de Daule, provincia del Guayas, Ecuador. Journal of Science and Research, 5(4), 1–16. Recuperado a partir de https://revistas.utb.edu.ec/index.php/sr/article/view/692.
Cobos Mora, F., Hasang Moran, E., Lombeida García, E., & Medina Litardo, R. (2020). Importancia de los conocimientos tradicionales, recursos genéticos y derechos de propiedad intelectual. Journal of Science and Research, 5(CININGEC), 60–78. Recuperado a partir de https://revistas.utb.edu.ec/index.php/sr/article/view/998.
Cominelli, E., Conti, L., Tonelli, C., Galbiati, M., (2013). Challenges and perspectives to improve crop drought and salinity tolerance. New Biotechnol. 30, 355-361.
Cui, P., Liu, H., Islam, F., Li, L., Farooq, M.A., Ruan, S., et al., (2016). OsPEX11, a peroxisomal biogénesis factor 11, contributes to salt stress tolerance in Oryza sativa. Front. Plant Sci. 7, 1357.
Cunha, J.R., Neto, M.C.L., Carvalho, F.E., Martins, M.O., Jardim-Messeder, D., Margis-Pinheiro, M., et al., 2016. Salinity and osmotic stress trigger different antioxidant responses related to cytosolic ascorbate peroxidase knockdown in rice roots. Environ. Exp. Bot. 131, 58-67.
De Datta SK, Neue HU, Senadhira D, Quijano C (1993) Success in rice improvement for poor soils. In: Proceedings of the workshop on adaptation of plants to soil stress. University of Nebraska, Lincoln, Nebraska, pp 248–268.
Desingh, R., Kanagaraj, G., (2007). Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. Gen. Appl. Plant Physiol. 33, 221-234.
Dobermann, A., Fairhust, T. (2012). Arroz: desordenes nutricionales y manejo de nutrientes. IPNI. 155-156 pp.
Epimashko, S., Meckel, T., Fischer-Schliebs, E., Luttge, U., Thiel, G., (2004). Two functionally different vacuoles for static and dynamic purposes in one plant mesophyll leaf cell. Plant J. 37, 294-300.
FAO, (2012). World Water Day 2012 Celebration, 22 March 2012, UN Conference Centre, Bangkok. Available from: http://www.fao.org/asiapacific/rap/home/meetings/list/detail/en/?meetings_id 5637&year 52012.
FAO. (2012). Guidelines for soil description. Rome, FAO. 110 pp. www.fao.org/3/a- ac339e.pdf.
FAO. (2016). Base referencial mundial del recurso suelo 2014. Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. Roma, Italia: Organización de las Naciones Unidas para la Alimentación y la Agricultura. Recuperado de http://www.fao.org/3/i3794es/I3794es.pdf. 218p.
Farooq, M.A., Gill, R.A., Ali, B., Wang, J., Islam, F., Ali, S., et al., (2016a). Subcellular distribution, modulation of antioxidant and stress-related genes response to arsenic in Brassica napus L. Ecotoxicology 25, 350-366.
Farooq, M.A., Gill, R.A., Islam, F., Ali, B., Liu, H., Xu, J., et al., (2016b). Methyl Jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Front. Plant Sci. 7, 468.
Farooq, M.A., Islam, F., Ali, B., Najeeb, U., Mao, B., Gill, R.A., et al., (2016c). Arsenic toxicity in plants: celular and molecular mechanisms of its transport and metabolism. Ecotoxicol. Environ. Saf. 132, 42-52.
Farooq, M.A., Li, L., Ali, B., Gill, R.A., Wang, J., Ali, S., et al., (2015). Oxidative injury and antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars. Environ. Sci. Pollut. Res. 22, 10699-10712.
Ferguson JN. (2019). Climate change and abiotic stress mechanisms in plants. Emerg. Topics Life Sci. 3 165–181.
Flowers TJ (2004) Improving crop salt tolerance. J exp Bot 55:307–319.
Gao, L., Liu, M., Wang, M., Shen, Q., Guo, S., (2016). Enhanced salt tolerance under nitrate nutrition is associated with apoplast Na+ content in canola (Brassica napus L.) and rice (Oryza sativa L.) plants. Plant Cell Physiol. 57, 2323-2333.
García J M, Lendzemo V, Castellanos V, Steinkellner S, Vierheilig H. (2009). Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza. 19:449-459.
Golldack, D., Li, C., Mohan, H., Probst, N., (2014). Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front. Plant Sci. 5, 151.
Gregorio GB, Senadhira D. (1993). Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theor Appl Genet 86:333–338.
Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G and Li S. (2017). Multilevel regulation of abiotic stress responses in plants. Front. Plant Sci. 8 1564.
Hayward, H.E.y Bernstein L. (1958). Plant-growth relationships on salt-affected soils. Bot. Rev, 24, 584-635. Recuperado de http://link.springer.com/article/10.1007%2FBF02872595#page-1.
Imbellone, P.,Giménez J.E. y Panigatti J.L. (2010). Suelos de la región pampeana. Procesos de Formación. Argentina. Buenos Aires: Editorial INTA. 288p.
Imbellone, P.,Giménez J.E. y Panigatti J.L. (2010). Suelos de la región pampeana. Procesos de Formación. Argentina. Buenos Aires: Editorial INTA. 288p.
INAMHI. (2019). National Institute of Meteorology and Hydrology. Agrometeorology Station of the Faculty of Agricultural Sciences of the Technical University of Babahoyo, Los Ríos, Ecuador.
Islam, F. (2018). Rice Responses and Tolerance to Salt Stress: Deciphering the Physiological and Molecular Mechanisms of Salinity Adaptation. 10.1016/B978-0-12-814332-2.00040-X.
Islam, F., Ali, B., Wang, J., Farooq, M.A., Gill, R.A., Ali, S., et al. (2016b). Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars. Plant Physiol. Biochem. 107, 82-95.
Islam, F., Ali, S., Farooq, M.A., Wang, J., Gill, R.A., Zhu, J., et al. (2017a). Butachlor-induced alterations in ultrastructure, antioxidant, and stress-responsive gene regulations in rice cultivars. CLEAN Soil Air Water 45, 1500851.
Islam, F., Farooq, M.A., Gill, R.A., Wang, J., Yang, C., Ali, B., et al. (2017b). 2,4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars. Sci Rep 7, 10443.
Islam, F., Yasmeen, T., Ali, S., Ali, B., Farooq, M.A., Gill, R.A. (2015b). Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiol. Plant. 37, 153-161.
Islam, F., Yasmeen, T., Arif, M.S., Ali, S., Ali, B., Hameed, S., et al. (2016a). Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul. 80, 23-36.
Islam, T., Manna, M., Reddy, M.K. (2015a). Glutathione peroxidase of Pennisetum glaucum (PgGPx) is a functional Cd2+ dependent peroxiredoxin that enhances tolerance against salinity and drought stress. PLoS ONE 10, e0143344.
Jarabejo, J., Celis R., Ramos J.M., Busto H., Angelo S. y Pangilinan W. (abril 2018). Analyzing the Salt Level in Different Soil Textures. Recuperado de https://www.ukessays.com/essays/sciences/analyzing-salt-level-soil-textures-2892.php.
Kalaiyarasi R, Palanisamy GA, Vaidyanathan P. (2002). The potentials and scope of utilizing TGMS lines in inter-subspecies crosses of rice (Oryza sativa L.). J Genet Breed 56:137–143.
Kim, Y.S., Kim, I.S., Shin, S.Y., Park, T.H., Park, H.M., Kim, Y.H., et al. (2014). Overexpression of dehydroascorbate reductase confers enhanced tolerance to salt stress in rice plants (Oryza sativa L. japonica). Int. J. Agric. Crop Sci. 2000, 444-456.
Koyro, H.W., Hussain, T., Huchzermeyer, B., Khan, M.A. (2013). Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environ. Exp. Bot. 91, 22-29.
Krasensky J and Jonak C. (2012). Drought, salt, and temperatura stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63 1593–1608.
Krishnamurthy, P., Ranathunge, K., Franke, R., Prakash, H.S., Schreiber, L., Mathew, M.K. (2009). The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta 230, 119-134.
Kumar, R.G., Shah, K., Dubey, R.S. (2000). Salinity induced behavioural changes in malate dehydrogenase and glutamate dehydrogenase activities in rice seedlings of differing salt tolerance. Plant Sci. 156, 23-34.
Lamz Piedra, A., González Cepero, M C. (2013). La salinidad como problema en la agricultura: la mejora vegetal una solución inmediata. Cultivos Tropicales,34 31-42. Recuperado de http://www.redalyc.org/articulo.oa?id=193228546005.
Lavado, R.S. (2007). Visión sintética de la distribución y magnitud de los suelos afectados por salinidad en la Argentina. Recuperado de http://www.conicet.gov.ar/new_scp/detalle.php?keywords=&id=29764&capitulos=yes&detalles=yes&capit_id=451821.
Lavado, R.S. y Taboada M. (2017). Génesis y propiedades de los suelos halomórficos. En Taleisnik, E. y Lavado R.S, (Ed.). Ambientes Salinos y Alcalinos de la Argentina (pp 9-27). Buenos Aires, Argentina: Editorial Orientación Gráfica.
Lin, K.C., Wu, T.M., Chandrika, N.N.P., Chou, S.J., Hong, C.Y. (2017). Molecular characterization and subcellular localization of salt-inducible lipid transfer proteins in rice. Biol. Plant. 61, 501-510.
Liu, C., Mao, B., Ou, S., Wang, W., Liu, L., Wu, Y., et al. (2014). OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol. Biol. 84, 19-36.
Liu, D.M., Gregorio, G.B., Oliveira, M.M., Saibo, N.J. (2017). Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. Plant Mol. Biol. 93, 61-77.
López R C, Gómez E, Campos R, Eichler B, Rodríguez L A, Guevara F, Gongora G. (2018). Afectaciones en el rendimiento de líneas de frijol común (Phaseolus vulgaris L.) provocado por salinidad. Cultivos Tropicales. 39(1):74-80.
Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., Suzuki, A. (2010). Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann. Bot. 105, 1141-1157.
Mishra, P., Bhoomika, K., Dubey, R.S. (2013). Differential responses of antioxidative defense system to prolonged salinity stress in salt tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250, 3-19.
Mittova, V., Tal, M., Volokita, M., Guy, M. (2002). Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol. Plant. 115, 393-400.
Moeljopawiro S, Ikehashi H. (1981). Inheritance of salt tolerance in rice. euphytica 30:291–300.
Mohammadi G, Singh R K, Arzanic A, Rezaiec A M, Sabourid H, Gregorio G B. (2010). Evaluation of salinity tolerance in rice genotypes. Int. J. Plant Prod. 4: 199–207.
Mohammadi-Nejad G, Singh RK, Arzani A, Rezaie AM, Sabouri H, Gregorio GB. (2010). evaluation of salinity tolerance in rice genotypes. Int J Plant Prod 4:199–207.
Moradi, F., Ismail, A.M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann. Bot. 99, 1161-1173.
Moulia, B. (2000). Leaves as shell structures: double curvature, auto-stresses, and minimal mechanical energy constraints on leaf rolling in grasses. J Plant Growth Regul. 19, 19-30.
Müller-Sämann, KM., Restrepo M. y José M. (1999). Conservación de suelos y aguas en la zona andina: Hacia el desarrollo de un concepto integral: Memorias. Centro Internacional de Agricultura Tropical (CIAT). Publicación No 309. Cali, Colombia. 230p.
Munns R and Tester M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59 651–681.
Munns, R., (2011). Plant adaptations to salt and water stress: differences and commonalities, Advances in Botanical Research, vol. 57. Academic Press, pp. 1-32.
Murchie, E.H., Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understand-ing some new applications. J. Exp. Bot. 64, 3983-3998.
Mwamba, T.M., Li, L., Gill, R.A., Islam, F., Nawaz, A., Ali, B., et al. (2016). Differential subcellular distribution and chemical forms of cadmium and copper in Brassica napus. Ecotoxicol. Environ. Saf. 134, 239-249.
Naeem, M.S., Warusawitharana, H., Liu, H., Liu, D., Ahmad, R., Waraich, E.A., et al. (2012). 5Aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast. Plant Physiol. Biochem. 57, 84-92.
Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K. (2010). Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. African Journal of Biotechnology. 9(34):5475-5480.
Negrao, S., Schmockel, S.M., Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Ann. Bot. 119, 1-11.
Nijensohn, L.N. (1988). Determinación del nivel de salinidad edáfica a partir del quíntuple extracto de saturación. Revista Ciencia del Suelo, 6 (1), 8 -13.
Páres, J., C. Basso. (2013). Efecto del cloruro de sodio sobre el crecimiento y estado nutricional de plantas de papaya. Bioagro 25:109-116.
Park, S.I., Kim, Y.S., Kim, J.J., Mok, J.E., Kim, Y.H., Park, H.M., et al. (2017). Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions. J. Plant Physiol. 215, 39-47.
Parvin, S., Biswas, S., Razzaque, S., Haque, T., Elias, S.M., Tammi, R.S., et al., (2015). Salinity and drought tolerance conferred by in planta transformation of SNAC1 transcription factor into a high-yielding rice variety of Bangladesh. Acta Physiol. Plant. 37, 68-75.
Patel P, Yadav K, Ganapathi TR and Suprasanna P. (2019a). Plant miRNAome: cross talk in abiotic stressful times; in Genomics-assisted breeding for crop improvement: abiotic stress tolerance (Eds) Rajpal VR, Sehgal D, Kumar A and Raina SN (Springer) pp 25–52.
Pizarro, F. (1978). Drenaje agrícola y recuperación de suelos salinos. España, Ed Mundi Prensa.521 p.
Pla Sentís, I. (1979). Suelos salinos y elementos secundarios. Revista Suelos Ecuatoriales, X (2), 26- 50.
Pla Sentís, I. (1993). Soil Salinization y Land Desertification. College on Soil Physics. International Centre for Theoretical Physics. Italia.
Pla Sentis, I. (2006a). Problemas de degradación de suelos en el mundo: Causas y consecuencias. X Congreso Ecuatoriano de la Ciencia del Suelo.
Pla Sentis, I. (2014). Advances in the prognosis of soil sodicity under dryland and irrigated conditions.International Soil and Water Conservation Research, 2(4):50-63. WASWAC. China.
Pla Sentis, I. (2017). Anthropogenic and climate change factors in present and future soil and wáter conservation problems. (Zlatic and Kostadinov, ed.) Soil and Water Resources Protection in the Changing Environment. Advances in GeoEcology CatenaVerlag GMBH.
Porta, J.; López Acevedo M.y Roquero C. (1994). Edafología para la agricultura y el medio ambiente. España: Ed.Mundi Prensa. 807pág.
Prieto Garra, D., Sánchez R.M. y. Martínez R.S. (2015) Las áreas de suelos y la degradación de la degradación de los suelos. En .Casas, R. y Albarracin G. (Editores). El deterioro del suelo y del ambiente en la Argentina. Tomo I (pp 319-346). Buenos Aires: Editorial FECIC. 604p.
Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R.J., et al., (2014). Economics of saltinduced land degradation and restoration. Nat. Resour. Forum 38, 282-295.
Ragab H, Abd M. (2015). Comparative Response of Salt Tolerant and Salt Sensitive Maize (Zea mays L.) Cultivars to Silicon. Journal of Academic. 2(1):1-5.
Ray PKS, Islam A (2008) Genetic analysis of salinity tolerance in rice. Bangladesh J Agric Res 33:519–529.
Reddy, I.N.B.L., Kim, S.M., Kim, B.K., Yoon, I.S., Kwon, T.R. (2017). Identification of rice accessions associated with K+/Na+ ratio and salt tolerance based on physiological and molecular responses. Rice Sci. 24, 360-364.
Reyes Borja, W. O., Zamora Morejón, B. J., Ruilova Cueva, M. B., Cobos Mora, F. J., & Espinoza Espinoza, F. G. (2020). Calidad molinera de 40 líneas avanzadas f6 de arroz (Oryza sp.) cultivadas en dos zonas arroceras del Ecuador. Journal of Science and Research, 5(CININGEC), 267–274. Recuperado a partir de https://revistas.utb.edu.ec/index.php/sr/article/view/1012.
Richards, L. A. (1973). Diagnóstico y rehabilitación de suelos salinos y sódicos. México: Ed. Limusa.172p.
Roy ST, Negrão S., Tester M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology. 115-124 pp.
SAMLA. (2018). Sistema de Apoyo Metodológico a Laboratorios de Análisis de suelo Recuperado de http://www.suelos.org.ar/sitio/sistema-de-apoyo-metodologico-a-laboratorios-deanalisis-de-suelo-samla/.
Sánchez W. (2013). The Wild Relative of Rice: Genomes and Genomics 2. Visited on May18, 2017. Available in: http://www.springer.com/cda/content/document/cda_downloaddocument/9781461479024-c1.pdf?SGWID=0-0-45-1444425-p175172215.
Sandoval F, Arreola J, Lagarda Á, Trejo R, Esquivel O, García G. (2010). Efecto de niveles de NaCl sobre fotosíntesis y conductancia estomática en nogal pecanero (Carya illinoinensis Wangeh.) (K. Koch). Revista Chapingo, Serie Zonas Áridas. 9:135-141.
Sankar PD, Subbaraman N, Narayanan SL (2008) Heterosis, combining ability and gene action studies in TGMS based rice hybrids under normal and salt affected environments. Indian J Agric Res 42:177–182.
Shafi, A., Chauhan, R., Gill, T., Swarnkar, M.K., Sreenivasulu, Y., Kumar, S., et al., (2015). Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol. Biol. 87, 615-631.
Shalata, A., Mittova, V., Volokita, M., Guy, M., Tal, M. (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol. Plant. 112, 487-494.
Shao H., Chu L., Jaleel, C. y Zhao C. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331: 215–225.
Shen, J., Lv, B., Luo, L., He, J., Mao, C., Xi, D., et al., (2017). The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci. Rep 7, 40641. Available from: https://doi.org/10.1038/srep40641.
Shen, Y., Shen, L., Shen, Z., Jing, W., Ge, H., Zhao, J., et al., (2015). The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ. 38, 2766-2779.
Shi, W.M., Xu, W.F., Li, S.M., Zhao, X.Q., Dong, G.Q. (2010). Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions. Plant Soil 326, 291-293.
Singh R K, Mishra B, Singh K N. (2004). Salt tolerant rice varieties and their role in reclamation programme in Uttar Pradesh. Indian Far. 6–10.
Soil Survey Staff. (2014). Claves para la Taxonomía de suelos. USDA, Dpto de Agricultura de los Estados Unidos. Traducción, Ortiz Solorio C.A., Gutiérrez Castorena M.C. y Gutiérrez Castorena E.V. 410p. Recuperado de https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051546.pdf.
Soto, F. (2017). Respuesta al estrés salino de injertos de Jatropha curcas (L.) en portainjerto de Jatropha cinerea (Ortega) Muell. Arg. Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz- Bolivia. 6-8 pp.
Suprasanna P and Ghag SB. (2019). Plant tolerance to environmental stress: translating research from lab to land; in Molecular plant abiotic stress: biology and biotechnology 1st edition (Eds) Roychoudhury A and Tripathi DK (JohnWiley & Sons Ltd).
Suprasanna P, Ghuge SA, Patade VY, et al. (2018). Genomic roadmaps for augmenting salinity stress tolerance in crop plants; in Salinity responses and tolerance in plants (Eds) Kumar V, Wani SH, Suprasanna P and Tran L-SP (Springer, Berlin) pp 189–216.
Suzuki, K., Yamaji, N., Costa, A., Okuma, E., Kobayashi, N.I., Kashiwagi, T., et al., (2016). OsHKT1; 4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biol. 16, 22.
Swain, D.M., Sahoo, R.K., Srivastava, V.K., Tripathy, B.C., Tuteja, R., Tuteja, N., (2017). Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. Planta 245, 367-383.
Szabolcs, I. (1988). Solonetz Soils. Proceeding of the International Symposium on Solonetz Soils. Problems Properties Utilization. Yugoslavia, 9-25.
Tabuchi, M., Sugiyama, K., Ishiyama, K., Inoue, E., Sato, T., Takahashi, H., et al., (2005). Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1; 1, a cytosolic glutaminesynthetase1; 1. Plant J. 42, 641-651.
Talesnik, E. y AA Rodriguez. (2017). Aspectos fisiológicos de la tolerancia a la salinidad en plantas superiores.. En Taleisnik, E. y Lavado R.S, (Ed.). Ambientes Salinos y Alcalinos de la Argentina (pp 327-338). Editorial Orientación Gráfica.
Tavakkoli E, Fatehi F, Coventry S, Rengasam P, & McDonald G. (2011). Additive effects of Na+and Cl-ions on barley growth under salinity stress. J. Exp. Bot. 62:2189-2203.
Tester M and Langridge P. (2010). Breeding technologies to increase crop production in a changing world. Science 327 818–822.
Tester, M., Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503-527.
Torabi M, Halim R. (2013). Physiological and biochemical responses of plants in saline environment. Roychowdhury, R. (Ed.). Crop Biology and Agriculture in Harsh Environments. Lambert Academic Publishing. 35-80.
Töth, J. (2000). Las aguas subterráneas como agente geológico: causas procesos y manifestaciones. Boletín Geológico y Minero, Instituto Tecnológico GeoMinero España, 8, 49-26.
Tripathy, M.K., Tiwari, B.S., Reddy, M.K., Deswal, R., Sopory, S.K. (2017). Ectopic expression of PgRab7 in rice plants (Oryza sativa L.) results in differential tolerance at the vegetative and seed setting stage during salinity and drought stress. Protoplasma 254, 109-124.
Tripathy, M.K., Tiwari, B.S., Reddy, M.K., Deswal, R., Sopory, S.K. (2017). Ectopic expression of PgRab7 in rice plants (Oryza sativa L.) results in differential tolerance at the vegetative and seed setting stage during salinity and drought stress. Protoplasma 254, 109-124.
UNFPA, 2014. Linking Population, Poverty and Development [Online]. Available from: http://www.unfpa.org/pds/trends.htm.
Varallyay, G. (1981). Extreme Moisture Regime as the Main Limiting Factor of the Fertility of salt affected soils. Agrokemia es Talajtan, 3, 73-95.
Varshney RK, Bansal KC, Aggarwal PK, Datta SK and Craufurd PQ. (2011). Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci. 16 363–371.
Vighi, I.L., Benitez, L.C., Amaral, M.N., Moraes, G.P., Auler, P.A., Rodrigues, G.S., et al., (2017). Functional characterization of the antioxidant enzymes in rice plants exposed to salinity stress. Biol. Plant. 61, 540-550.
Wang ZF, Wang JF, Bao YM, Wu YY, Su X, Zhang HS. (2010). Inheritance of rice seed germination ability under salt stress. Rice Sci 17:105–110
Wang, H., Wang, H., Shao, H., Tang, X., (2017b). Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front. Plant Sci. 7-4563.
Wang, H., Wu, Z., Chen, Y., Yang, C., Shi, D., (2011). Effects of salt and alkali stresses on growth and ion balance in rice (Oryza sativa L.). Plant Soil Environ. 57, 286-294.
Wang, H., Wu, Z., Han, J., Zheng, W., Yang, C., (2012a). Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants. PLoS ONE 7, e37817. Available from: https://doi.org/10.1371/journal.pone.0037817.
Wang, H., Zhang, M., Guo, R., Shi, D., Liu, B., Lin, X., et al., (2012b). Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol. 12, 194.
Wang, J., Lv, M., Islam, F., Gill, R.A., Yang, C., Ali, B., et al., (2016). Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity. Ecotoxicol. Environ. Saf. 133, 146-156.
Wang, R., Jing, W., Xiao, L., Jin, Y., Shen, L., Zhang, W., (2015). The rice high-affinity potassium Transporter1; 1 is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiol. 168, 1076-1090.
Wankhade, S.D., Sanz, A., (2013). Chronic mild salinity affects source leaves physiology and productivity parameters of rice plants (Oryza sativa L., cv. Taipei 309). Plant Soil 367, 663-672.
Xiong, H., Li, J., Liu, P., Duan, J., Zhao, Y., Guo, X., et al., (2014). Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE 9, e92913.
Xu, L., Islam, F., Ali, B., Pei, Z., Li, J., Ghani, M.A., et al., (2017). Silicon and water-deficit stress differentially modulate physiology and ultrastructure in wheat (Triticum aestivum L.). 3 Biotech 7, 273.
Xu, L., Zhang, W., Ali, B., Islam, F., Zhu, J., Zhou, W., (2015). Synergism of herbicide toxicity by 5-aminolevulinic acid is related to physiological and ultra-structural disorders in crickweed (Malachium aquaticum L.). Pestic. Biochem. Physiol. 125, 53-61.
Yamane, K., Mitsuya, S., Taniguchi, M., Miyake, H., (2012b). Salt-induced chloroplast protrusion is the process of exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts into cytoplasm in leaves of rice. Plant Cell Environ. 35, 1663-1671.
Yamane, K., Taniguchi, M., Miyake, H., (2012a). Salinity-induced subcellular accumulation of H in leaves of rice. Protoplasma 249, 301-308.
Yeats, T.H., Rose, J.K., (2008). The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci. 17, 191-198.
Zeng L, Shannon M C. (2003). Salinity Effects on Seedling Growth and Yield Components of Rice. Crop Sci. 40:996–1003.
Zhang, H., Li, D., Zhou, Z., Zahoor, R., Chen, B., Meng, Y., (2017). Soil water and salt affect cotton (Gossypium hirsutum L.) photosynthesis, yield and fiber quality in coastal saline soil. Agric. Water Manage. 187, 112-121.
Zhang, Z.J., Li, H.Z., Zhou, W.J., Takeuchi, Y., Yoneyama, K., (2006). Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul. 49, 27-34.
Zhou, J., Wang, X., Jiao, Y., Qin, Y., Liu, X., He, K., et al., (2007). Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol. Biol. 63 (5), 591-608.
Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167 314–324.
Zhu, N., Cheng, S., Liu, X., Du, H., Dai, M., Zhou, D.X., et al., (2015). The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci. 236, 146-156.
Descargas
Publicado
Versiones
- 2022-09-28 (2)
- 2022-09-28 (1)
Categorías
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.