Cultivo de maíz

Autores/as

Fernando Javier Cobos Mora, Universidad Técnica de Babahoyo - Ecuador; María Bernarda Ruilova Cueva, Universidad Técnica de Babahoyo - Ecuador; Juan carlos Gómez Villalva, Universidad Técnica de Babahoyo - Ecuador; Walter Oswaldo Reyes Borja, Universidad Técnica de Babahoyo - Ecuador; Jackson Alejandro Cornejo Ortiz, División Semillas, Agripac S.A; Marlon Yoel González Chica, Universidad Técnica de Babahoyo - Ecuador; Reina Concepción Medina Litardo, Universidad de Guayaquil - Ecuador; Emma Lombeida García, Universidad Técnica de Babahoyo - Ecuador; Iris Betzaida Pérez Almeida, Universidad ECOTEC; Marlon Darlin López Izurieta, Universidad Técnica de Babahoyo - Ecuador; Adriana Magdalena Mejía Gonzales, Universidad Técnica de Babahoyo - Ecuador; Gabriela Electra Medina Pinoargote, Universidad Técnica de Babahoyo - Ecuador; Luiggi Steeven López Salvatierra, Universidad Técnica de Babahoyo - Ecuador; Edwin Stalin Hasang Moran, Universidad Agraria del Ecuador - Ecuador; Arturo Enrique Alvarado Barzallo, Universidad Agraria del Ecuador - Ecuador; Antonio Gonzalo Álava Murillo, Universidad Agraria del Ecuador - Ecuador; Danny Daniel Avilés Párraga , Universidad Agraria del Ecuador; Carmen Emelia Muñoz López, Universidad de Guayaquil - Ecuador; Cristina Evangelina Maldonado Camposano , Universidad Técnica de Babahoyo - Ecuador; Germán Reinaldo Troya Guerrero, Universidad Técnica de Babahoyo - Ecuador; Jhon Luis Cano Maquilón, Universidad Técnica de Babahoyo - Ecuador; Simón Ezequiel Farah Asang, Universidad Agraria del Ecuador - Ecuador; Wilmer Baque Bustamante, Universidad Agraria del Ecuador - Ecuador; Marlon Stalin Ovando Quintanilla, Universidad Agraria del Ecuador - Ecuador; Fernando Espinoza Espinoza, Universidad Técnica de Babahoyo - Ecuador; Enrique Salazar Llorente , Universidad Técnica de Babahoyo - Ecuador; Dayaneth Rivera Troya, Universidad Técnica de Babahoyo - Ecuador; Jhon Izquierdo Moran, Universidad Técnica de Babahoyo - Ecuador; Hugo Javier Alvarado Álvarez, Universidad Técnica de Babahoyo - Ecuador; Roberto Carlos Medina Burbano, Universidad Técnica de Babahoyo - Ecuador

Palabras clave:

Maíz, Cultivo, Agronomía

Sinopsis

El libro "Cultivo de maíz" es una guía exhaustiva para aquellos que desean aprender sobre el manejo de este importante cultivo. El maíz es una de las principales fuentes de alimento en el mundo y es vital para la economía global. A lo largo de las páginas de este libro, se explican todos los aspectos necesarios para su cultivo, desde la selección de la semilla hasta la cosecha y el almacenamiento. Se detallan las diferentes variedades de maíz y se explica cómo elegir la más adecuada para cada región y clima. Es importante tener en cuenta que el maíz es un cultivo que requiere mucha luminosidad y agua, por lo que es necesario elegir una variedad que se adapte a las condiciones climáticas y de suelo en la zona donde se vaya a cultivar. Además, es fundamental realizar una buena preparación del suelo antes de la siembra, ya que esto puede afectar significativamente el rendimiento de la cosecha. Una vez que se haya sembrado el maíz, es necesario prestarle atención y cuidado durante todo su ciclo de crecimiento. Esto incluye el control de plagas y enfermedades y la eliminación de malezas que puedan competir con las plantas de maíz por el agua y los nutrientes del suelo. Es importante seguir las recomendaciones del libro para garantizar que se obtenga el mejor rendimiento posible. Cuando llegue el momento de la cosecha, el libro proporciona instrucciones sobre cómo recolectar el maíz de manera efectiva y cómo almacenarlo correctamente para prolongar su vida útil. También se brinda información sobre cómo utilizar el maíz en la alimentación humana y animal, así como su uso en la industria. En resumen, el libro "Cultivo de maíz" es una herramienta esencial para cualquier persona interesada en aprender más sobre este importante cultivo y cómo aprovechar al máximo sus beneficios. Si estás interesado en el cultivo de maíz o simplemente quieres saber más sobre este importante alimento, este libro es una lectura obligada. Proporciona una comprensión completa del proceso de cultivo y ofrece consejos valiosos para maximizar el rendimiento y obtener una cosecha exitosa.

Capítulos

  • Capítulo I. Origen e historia
    Fernando Javier Cobos Mora, Walter Oswaldo Reyes Borja, Jackson Alejandro Cornejo Ortiz, Marlon Yoel González Chica
  • Capítulo II. Situación mundial, regional y nacional en la producción de maíz.
    Fernando Javier Cobos Mora, Reina Concepción Medina Litardo, Emma Lombeida García, Iris Betzaida Pérez Almeida
  • Capítulo III. Nutrición en maíz.
    Marlon Darlin López Izurieta, Adriana Magdalena Mejía Gonzales, Gabriela Electra Medina Pinoargote, Luiggi Steeven López Salvatierra
  • Capítulo IV. Manejo integrado de plagas y enfermedades.
    Edwin Stalin Hasang Moran, Arturo Enrique Alvarado Barzallo, Antonio Gonzalo Álava Murillo, Danny Daniel Avilés Párraga , Fernando Javier Cobos Mora
  • Capítulo V. Manejo integral de arvenses.
    Carmen Emelia Muñoz López, Cristina Evangelina Maldonado Camposano , Germán Reinaldo Troya Guerrero, Jhon Luis Cano Maquilón
  • Capítulo VI. La quema de los residuos de cosecha y su impacto en la fertilidad de los suelos.
    Edwin Stalin Hasang Moran, Simón Ezequiel Farah Asang, Wilmer Baque Bustamante, Marlon Stalin Ovando Quintanilla, Fernando Javier Cobos Mora
  • Capítulo VII. Industrialización del maíz.
    Fernando Espinoza Espinoza, Enrique Salazar Llorente , Dayaneth Rivera Troya, Jhon Izquierdo Moran
  • Capítulo VIII. Maíz Forrajero.
    Fernando Javier Cobos Mora, Juan carlos Gómez Villalva, Hugo Javier Alvarado Álvarez, Roberto Carlos Medina Burbano

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adrián J. (2017). Evaluación del efecto de dos dosis de fertilizantes foliares en dos distancias de siembra en el cultivo de maíz (Zea mays L.) [Internet]. Universidad de Guayaquil. Disponible en: http://repositorio.ug.edu.ec/handle/redug/15587.

Andrade F.H., Cirilo A.G., Uhart S.A. & Otegui M.E. (1996). Crecimiento del cultivo. En: Ecofisiología del cultivo de maíz. EEA Balcarce, CERBAS, INTA-FCA, UNMP (Eds.). Editorial La Barrosa. Dekalb Press. Buenos Aires. 292 pp.

Andrade, F.H.; Vega, C.; Uhart, S.; Cirilo, A.; Cantarero, M. and Valentinuz, O. (1999). Kernel number determination in maize. Crop Science, 39, 453-459.

Bavec, F. and Bavec, M. (2002). Effect of plant population on leaf area index, cob characteristics and grain yield of early maturing maize cultivar (FAO-100-400). European Journal of Agronomy, 16, 151-159.

Bonhomme R., Derieux M. & Edmeades G.O. (1994). Flowering of diverse maize cultivars in relation to temperature and photoperiod in multilocation trails. Crop Science 34:156-164.

Bonhomme R., Derieux M., Kiniry J.R., Edmeades G.O. & Ozier Lafontaine H. (1991). Maize leaf number sensitivity in relation to photoperiod in multilocation field trials. Agronomy Journal 83:153-157.

Christensen, L.A. (2002). Soil, nutrient and water management systems used in US corn production. Agriculture Information Bulletin No. 774, United States Department of Agriculture (USAID), USA.

Cirilo A.G. (1994). Desarrollo, crecimiento y partición de materia seca en cultivos de maíz sembrados en diferentes fechas. Tesis Magister Scientiae. Facultad de Ciencias Agrarias. Universidad Nacional de Mar del Plata. 86 pp.

Corcuera V. (2012). Desarrollo y evaluación de nuevo germoplasma de maíz (Zea mays L.) para uso especial en argentina [Internet]. Universidad Politécnica de Valencia. Disponible en: https://dialnet.unirioja.es/servlet/dctes?codigo=73125

Cross H.Z. (1975). Diallel analysis of duration and rate of grain filling of seven inbred lines of corn. Crop Science 15:532-535.

Danforth, A. (2009). Corn Crop Production Growth, Fertilization and Yield. Editor: ISBN 978-1-60741- 955-6- Nova Science Publishers, Inc.

De la Cruz J. (2016). Fraccionamiento de nitrógeno en dos densidades de siembra de maíz amarillo duro (Zea mays L.) en la localidad de La Molina [Internet]. Universidad Nacional Agraria La Molina. Disponible en: http://repositorio.lamolina.edu.pe/handle/unalm/1961.

Deras, H. (2010). Guía técnica del cultivo de maíz. Recuperado de http://passthrough.fw-notify.net/download/329987/http://repiica.iica.int/docs/b3469e/b3469e.pdf.

Doebley, J., Major M., Goodman, C y Stuber, W.(1984). Isoenzymatic variation in Zea (Gramineae). Systematic Botany, 9: 203–218.

Dwyer, L.M.; Stewart, D.W.; Carrigan, B.L.; Ma, B.L.; and Neave, A.P. (1999a). Guidelines for comparisons among different corn maturity rating systems. Agronomy Journal, 91, 946949.

Ellis R.H., Summerfield, R.J., Edmeades, G.O. & Roberts, E.H. (1992). Photoperiod, temperature, and the interval from sowing to tassel initiation in diverse cultivars of maize. Crop Science 32:1225-1232.

Eubanks, M. (2001). The mysterious origin of maize. Economic Botany, 55: 492–514.

FAOSTAT (2018) FAOSTAT Data. In: Food Agric. Organ. United Nations, Rome. http://faostat.fao.org. Accessed 22 Mar 2018.

Galinat, W. (1977). The origin of corn. In: Corn and Corn Improvement, edited by G. F. Sprague. Agronomy 18. American Society of Agronomy. Madison. pp. 1–47.

Gehman, A.M.; Kononoff, P.J.; Mullins, C.R. and Janicek, B.N. (2008). Evaluation of nitrogen utilization and the effects of monensin in dairy cows fed brown mid rib corn silage. Journal of Dairy Science, 91, 288-300.

Goss, J.A. (1968). Development, physiology and biochemistry of corn and wheat pollen. Botanical Review, 34, 333-358.

Grobman A., Bonavia, D. Dillehay, T.,Piperno, D., Iriarte, I y Holst I. (2012). Preceramic maize from Paredones and Huaca Prieta, Peru. Proceedings of the National Academy of Sciences of the United States of America, 109 (5): 1755–1759.

Grobman T., Wilfredo, A. (1961). Races of Maize in Peru. National Academy of Sciences. National Research Council. Publication 915. Washington, D.C.

Harlan, J. (1995). The Living Fields: Our Agricultural Heritage. Cambridge University Press. Cambridge.

Hay, R.K.M. and Gilbert, R.A. (2001). Variation in the harvest index of tropical maize: evaluation of recent evidence from Mexico and Malawi. Annals of Applied Biology, 138, 103-109.

Kiniry J.R. & Bonhomme R. (1991). Predicting maize phenology. En: Predicting crop phenology. T. Hodges (Ed.). pp. 115-131.

Kiniry J.R. & Ritchie J.T., (1985). Shade-sensitive interval of kernel number of maize. Agronomy Journal 77:711-715.

Kiniry, J.R. Ritchie J.T., Musser R.L., Flint E.P. & Iwig W.C. (1983). The photoperiod sensitive interval in maize. Agronomy Journal 75:687-690.

Ma, B.L.; Subedi, K.D. and Zhang, T.Q. (2007). Pre-sidedress nitrate test and other crop-based indicators for fresh market and processing sweet corn. Agronomy Journal, 99, 174-183.

Ma, B.L.; Subedi, K.D.; Stewart, D.W. and Dwyer, L.M. (2006b). Dry matter accumulation and silage moisture changes after silking in Leafy and dual-purpose corn hybrids. Agronomy Journal, 98, 922-929.

Mangelsdorf, P (1974). Review of Corn: Its Origin, Evolution and Improvement. Science, 185 (4152): 687–688.

Manrique L.A. & Hodges T. (1991). Development and Growth of Tropical Maize at Two Elevations in Hawaii. Agronomy Journal 83:305-310.

Morris, M. L. (2002). Impacts of International Maize Breeding Research in Developing Countries, 1966-1998. Mexico, D.F.:CIMMYT.

Ortigoza, J., Carlos, G., López, A., Jorge, T., y Gonzalez, D. (2019). Guía técnica de cultivo de maíz. Recuperado de https://www.jica.go.jp/paraguay/espanol/office/others/c8h0vm0000ad5gke-att/gt_04.pdf

Ortiz, A .(1994). Some cultural meanings of corn in aboriginal North America. In: Corn and Culture in the Prehistoric New World, edited by Sissel Johannesen and Christine A. Hastorf. Westview Press. Boulder. pp. 527–544.

Otegui M.E. & Melón S. (1997). Kernel set and flower synchrony within the ear of maize. ISowing date effects. Crop Science 37:441-447.

Rajcan, I. and Tollenaar, M. (1999a). Source: sink ratio and leaf senescence in maize. I. Dry matter accumulation and partitioning during kernel filling. Field Crops Research, 60, 245253.

Rajcan, I. and Tollenaar, M. (1999b). Source: sink ratio and leaf senescence in maize. II. Nitrogen metabolism during kernel filling. Field Crops Research, 60, 255-265.

Revelo, M. (2006). Proyecto de prefactibilidad para la comercialización de maíz (En línea). Disponible en: http://repositorio.ute.edu.ec/bitstream/123456789/6982/1/27776_1.pdf.

Ritchie J.T. & NeSmith D.S. (1991). Temperature and crop development. En: Modeling plant and soil systems. J. Hanks & J.T. Ritchie (Eds.). Agronomy Monograph 31:5-29.

Ritchie S.W.; Hanway, J.J. and Benon, G.O. (1993). How a maize plant develops. Sp. Rpt. No. 48. Iowa State University of Science and Technology. Co-operative Extension Services. Ames. IA.

Ritchie, H.; Hanway, R. (1982). Jornada de manejo sustentable del cultivo del maíz. (En línea). Disponible en:http://www.fps.org.mx/divulgacion/attachments/article/842/Jornada%20de%20manejo%20sustentable%20del%20cultivo%20del%20maiz.pdf.

Schoper, J.B.; Lambert, R.J. and Vasilas, B.L. (1987). Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop Science, 27, 27-31.

Servicio Nacional de Meteorología E Hidrología. (2016). Fenología del Maíz. Lima, Perú: [SENAMHI].

Shaver, D.L. (1983). Genetics and breeding of maize with extra leaves above the ear. Proceedings of the 38th Annual Corn and Sorghum Research Conference, American Seed Trade Association, Washington D.C.

Subedi, K.D. (2002). Maize and finger millet relay intercropping system in the hills of Nepal: issues for sustainability. Pp. 170-174. In: N. R. Rajbhandary, J.K. Ransom, K. Adhikari and A. F. E. Palmer (eds.) Sustainable Maize Production Systems for Nepal. Proceedings of a Maize Symposium held December 3-5, 2001, Kathmandu, Nepal.

Subedi, K.D. and Ma, B.L. (2009). Assessment of some major yield-limiting factors on maize production in a humid temperate environment. Field Crops Research, 110, 21-26.

Subedi, K.D. and Ma, B.L. (2005a). Nitrogen uptake and partitioning in stay-green and leafy maize hybrids. Crop Science, 45, 740-747.

Subedi, K.D. and Ma, B.L. (2005b). Effect of N-deficiency and timing of N supply on the recovery and distribution of labelled 15N in contrasting maize hybrids. Plant and Soil, 273, 189-202.

Subedi, K.D.; Ma, B.L. and Smith, D.L. (2006). Response of leafy and non-leafy maize hybrid to plant population densities and fertilizer nitrogen levels. Crop Science, 46, 1860-1869.

Subedi, K.D.; Sthapit, B.R.; Joshi, K.D.; Floyd, C.N.; Pandey, R.R. and Rana, R.B. (1993). Indigenous upland rice culture in the western hills of Nepal: Contribution of farmers' knowledge in rainfed farming. Preceedings of the Third International Symposium on Sustainable Agriculture, CEICAPAR, Mexico, December 1-4, 1993.

Tollenaar M. & Bruulsema T.W. (1988). Eficiency of maize dry matter production during periods of complete leaf-area expansion. Agronomy Journal 80:580-585

Tollenaar M., Daynard T.B., & Hunter R.B (1979). Effect of temperature on rate of leaf appearance and flowering date in maize. Crop Science 19:363-366.

Tollenaar, M. (1977). Sink source relationships during reproductive development in maize: A review. Maydica, 22, 49-75.

Tollenaar, M. and Wu, J. (1999). Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Science, 39, 1597-1604.

Warrington I.J. & Kanemasu E.T. (1983). Corn growth response to temperature and photoperiod. II Leaf initiation and leaf-appearance rates. Agronomy Journal 75: 755-761.

Westgate, M.E.; Forcella, F.; Reicosky, D.C. and Somsen, J. (1997). Rapid canopy closure for maize production in the northern US Corn Belt: Radiation use efficiency and grain yield. Field Crops Research, 49, 249-258.

Wilkes, H. (1989). Maize: Domestication, racial evolution, and spread. In: Foraging and Farming: The Evolution of Plant Exploitation, edited by D. R. Harris and G. C. Hillman. Unwin Hyman. London. pp. 441–455.

Álvarez, R., Chuquija, J., Mendoza, C, Panizo, R & Sevillano, R. (2017). Fuentes y dosis de nitrógeno en la productividad del maíz amarillo duro bajo dos sistemas de siembra. In Anales Científicos; 78(2):232-240. http://dx.doi.org/10.21704/ac.v78i2.1061

Analuisa, I., García, S., Rodríguez, O., & Paredes, M. (2020). Análisis primario de las cadenas de valor en el maíz Portoviejo, Ecuador. Revista ECA Sinergia. 11 (1), 44-57. https://doi.org/10.33936/eca_sinergia.v%vi%i.1692

Amador, G & García, J. 2015. La sustentabilidad ambiental de la producción del maíz y del chile de árbol de Yahualica de González Gallo. http://ru.iiec.unam.mx/5102/1/2-163-Amador-Garcia.pdf http://ru.iiec.unam.mx/5102/1/2-163-Amador-Garcia.pdf

BCE (Banco Central del Ecuador). (2018). Estadística de Comercio Exterior. Banco Central del Ecuador, Quito. Recuperado el 5 de julio del 2018, https://www.bce.fin.ec/index.php/c-exterior.

BCE (Banco Central del Ecuador). (2021). Reporte de Coyuntura Sector Agropecuario

Subgerencia de Programación y Regulación. Boletín de Análisis Agropecuario. N° 94 - I – 2021. ISSN N° 1390 – 0579. https://contenido.bce.fin.ec/documentos/PublicacionesNotas/Catalogo/Encuestas/Coyuntura/Integradas/etc202101.pdf.

BCE (Banco Central del Ecuador). (2022). Boletín de Análisis Agropecuario. N° 94 - IV T – 2021.

Basante, E. (2015). Manejo de Cultivos Andinos del Ecuador.Universidad de las Fuerzas Armadas.http://repositorio.espe.edu.ec/bitstream/21000/10163/4/Manejo%20Cultivos%20Ecuador.pdf.

Báez, M.A., & Aguirre M.J. (2011). Efecto de la Labranza de Conservación sobre las propiedades del suelo. Terra Latinoamericana, 29 (2), 113-121.

Boada, R., & Espinosa, J. (2016). Factores que limitan el potencial de rendimiento del maíz de polinización abierta en campos de pequeños productores de la Sierra de Ecuador. Siembra 3 067–082. http://scielo.senescyt.gob.ec/pdf/siembra/v3n1/2477-8850-siembra-03-01-0007.pdf.

Caviedes, M. (2018). Producción de semilla de maíz duro en el Ecuador: retos y oportunidades. ACI Avances en Ciencias e Ingenierías. Universidad San Francisco de Quito, Ecuador.

Caviedes, M., Carvajal, F., & Zambrano, J. (2022). Tecnologías para el cultivo de maíz (Zea mays. L) en el Ecuador. Cumbayá, Quito, Ecuador. Avances en Ciencias e Ingenierías. 14 (1). https://doi.org/10.18272/aci.v14i1.2588.

Cuenca, S. (2019). Efecto de la alta densidad de siembra en el comportamiento agronómico de cuatro híbridos de maíz (Tesis de Ingeniería). Universidad Agraria del Ecuador, Guayaquil, Ecuador.

Deras, H. (s.f). Guía Técnica. El cultivo de maíz. IICA. p. 52.

Dobronski-Arcos, J., Barona, D., Bustillos, M., & Grefa-Yumbo, M. (2021). Respuesta del maíz blanco harinoso tipo “Chazo” a las condiciones agroclimáticas de Cevallos, Tungurahua, Ecuador. Archivos Académicos USFQ (38), 36.

ESPAC (Encuesta de Superficie y Producción Agropecuaria Continua). (2021). Producción de maíz duro seco (miles de Tm). Rendimiento 2021. https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac-2021/Principales%20resultados-ESPAC_2021.pdf.

El-Abady. (2015). Influence of Maize Seed Size/Shape, Planted at Different Depths and Temperatures on Seed Emergence and Seedling Vigor. Research Journal of Science, 8: 1-11.

FIRA (Fideicomisos Instituidos en Relación con la Agricultura). (2016). Panorama agroalimentario. México: Dirección de investigación y evaluación económica sectorial. Maíz 2016.

FAOSTAT (Food and Agriculture Organization of the United Nations). (2022). Datos estadísticos de la Organización de las Naciones Unidas para la Agricultura y la Alimentación). (2022). Recuperado el 29 de octubre de 2022, de https://www.fao.org/faostat/en/.

Granados, G. (2001). Manejo postcosecha en Paliwal, R. L., Granados, G. Lafitte, N. Violic, A.D. El maíz en los trópicos: Mejoramiento y producción. https://www.fao.org/3/x7650s/x7650s00.htm.

Gonzáles, F., Guajardo, L., Almeraya, S., Perez, L., & Sangerman, D. (2021). Evaluación de la sustentabilidad del cultivo de maíz en Villafloresy La Trinitaria, Chiapas. Ciencias agrícolas. 11(7). https://doi.org/10.29312/remexca.v11i7.2673.

Guamán, R., Desiderio, T., Villavicencio, A., Ulloa, S., Romero, E., (2020). Evaluación del desarrollo y rendimiento del cultivo de maíz (Zea mays L.) utilizando cuatro híbridos. OI: https://doi.org/10.29166/siembra.v7i2.2196.

Hasang, E., García, S., Carrillo, M., Durango, W & Cobos, F. (2021). Sustentabilidad del sistema de producción del maíz, en la provincia de Los Ríos (Ecuador), bajo la metodología multicriterio de Sarandón. Selva Andina Biosphere. 9(1):26-40: http://www.scielo.org.bo/pdf/jsab/v9n1/2308-3859-jsab-9-01-26.pdf

INIAP (Instituto Nacional de Investigaciones Agropecuarias). (2014). Maíz Duro. Siembra. http://tecnologia.iniap.gob.ec/index.php/explore-2/mcereal/rmaizd.

INIAP (Instituto Nacional de Investigaciones Agropecuarias). (2004). Estación Experimental Santa Catalina. Proyecto IQ-CV-096 INIAP-PROMSA Quito - Ecuador Plegable Divulgativo No. 251. https://repositorio.iniap.gob.ec/bitstream/41000/2529/1/iniapscpl251l.pdf.

INEC (Instituto Nacional de Estadísticas y Censos). (2021). Encuesta de superficie y producción agropecuaria continua 2020. Recuperado de https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac-2020/Presentacion%20ESPAC%202020.pdf

Iglesias, S. (2018). Aplicación de Biochar a partir de Biomasa Residual de Eucalipto para Evaluar la Productividad con Maíz en el Austro Ecuatoriano. Tesis para Optar El Grado De Doctor Doctoris Philosophiae en Ingeniería y Ciencias Ambientale. Lima-Perú. http://repositorio.lamolina.edu.pe/bitstream/handle/20.500.12996/3394/iglesias-abad-sergio-fernando.pdf?sequence=1&isAllowed=y.

INTAGRI. (2017). Homogeneidad en la Profundidad de Siembra en el Cultivo de Maíz. Serie Cereales. Núm. 36. Artículos Técnicos de INTAGRI. México. 3 p.

Lafitte, HR. (2001). Fisiología del maíz tropical en Paliwal, R. L., Granados, G. Lafitte, N. Violic, A.D. El maíz en los trópicos: Mejoramiento y producción. https://www.fao.org/3/x7650s/x7650s00.htm.

León, R., Torres, A., Ardisana, E., Fosado, O., Véliz, F., & Pin, W. (2018). Comportamiento productivo del maíz híbrido Agri-104 en diferentes sistemas, densidades de siembra y riego localizado. Espamciencias, 10(1):124-130.

León-Ruíz, J. E., León-Terán, J.E., & Silva-Orozco, J.S. (2021). El riego en maíz de altura (Zea mays L.) para la Sierra ecuatoriana. Archivos Académicos (38), 14.

León-Aguilar, R., Torres-García, A., & Sánchez-Mora, F. (2021). Efecto de la densidad de siembra y riego localizado por goteo en el comportamiento productivo del maíz. Archivos Académicos (38), 46.

Lozano L. (2017). Evaluación del comportamiento del maíz blanco urubamba (Zea mays) bajo tres densidades y tres niveles de abonamiento en el Cipa Allpa Rumi- MarcaraCarhuaz- Ancash [Internet]. Universidad Nacional «Santiago Antúñez de Mayolo».

Moreno, V., Lasso, L., Reyes, M., Haro, R., & Cruz, G. (2018). Aptitud agroecológica de tres cultivos estratégicos (maíz, arroz y caña de azúcar) en 14 cantones de la cuenca baja del río Guayas. Ciencias e Investigación. 2(13).

Montesdeoca, F., & Palomeque, G. (2020). Evaluación del comportamiento de maíz (Zea mays L) variedad INIAP 122 bajo dos densidades poblacionales y cuatro niveles de Nitrógeno en siembra directa. Universidad Central del Ecuador. Facultad de Ciencias Agrícolas – Carrera de Ingeniería en Agronómica. Trabajo de titulación. Ingeniero Agrónomo. 90.

Monteros, A., & Salvador, S. (2014). Rendimiento de maíz duro seco en verano. Quito: Dirección de Análisis y Procesamiento de la Información, Coordinación General del Sistema de Información Nacional, Ministerio de Agricultura, Ganadería, Acuacultura y Pesca.

MAG (Ministerio de Agricultura y Ganadería) (2014). Zonificación agroecológica económica del cultivo de maíz duro (Zea mays L.) en el Ecuador continental a escala 1:250 000 resumen ejecutivo. Quito – Ecuador. 12 p. http://sipa.agricultura.gob.ec/descargas/zonificaciones/maiz_amarillo_duro_2014.pdf.

MAGAP – CGSIN (Ministerio de Agricultura, Ganadería, Acuacultura y Pesca - Coordinación General del Sistema de Información Nacional). (2016). Boletín situacional Maíz. Ministerio de Agricultura, Ganadería, Acuacultura y Pesca. Coordinación General del Sistema de Información Nacional. http: //sipa.agricultura.gob. ec/phocadownloadpap/cultivo/2016/boletín_ situacional_maiz_duro_seco_2015.pdf.

MAGAP (Ministerio de Agricultura, Ganadería, Acuacultura y Pesca). (2016). El sector agropecuario ecuatoriano: análisis histórico y prospectiva a 2025. Quito, Ecuador: MAGAP.

MAG (Ministerio de Agricultura y Ganadería). (2018). Rendimientos objetivos de maíz duro época de invierno 2018 (Enero - Junio). Quito, Ecuador. http://sipa.agricultura.gob.ec/descargas/estudios/rendimientos/maiz/rendimiento_maiz_duro_invierno_2018.pdf

MAG (Ministerio de Agricultura y Ganadería). (2019). Prácticas agronómicas de maíz amarillo duro, invierno 2019. SIPA. https://fliphtml5.com/ijia/ahbk/basic.

Ortíz, R., Quilanchamin, A., Chile, M., & Cartagena, Y. (2021). Efecto del fertiriego en el cultivo de maíz harinoso (Zea mays L. var. amylacea) variedad pepa. Archivos Académicos (38), 43.

Perrachón J. (2004). Siembra Directa: ¿qué es? Revista del Plan Agropecuario. 54–57. https://www.planagropecuario.org.uy/publicaciones/revista/R110/R110_ 54.pdf.

Pérez Almeida, I., & García Mendoza, P. (2020). Aportes de la biotecnología al mejoramiento del maíz. Revista Peruana De Innovación Agraria - ISSN: 2810-8876 (En Línea), 1(1), 130 - 150. Recuperado a partir de http://200.123.25.14/index.php/REVINIA/article/view/10.

Ranum, P., Peña-Rosas, J., & García-Casal, M. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312, 105–112.

Sandal, M. (2014). Comportamiento agronómico de tres híbridos de maíz (Zea mays l.) en el cantón pueblo viejo provincia de Los Ríos [Internet]. Universidad Técnica Estatal de Quevedo. http://repositorio.uteq.edu.ec/handle/43000/478.

Sánchez, P., Ocampo, I., Parra, F., Sánchez, J., Ramírez, A., & Argumedo, A. (2014). Evaluación de la Sustentabilidad del Agroecosistema Maíz en la Región de Huamantla, Tlaxcala, México. Agroecología. 9(1). https://revistas.um.es/agroecologia/article/view/300691/21611.

Sánchez, V. (2020). Efecto de la adopción de semilla híbrida sobre la productividad por hectárea del cultivo de maíz duro: evidencia desde Ecuador. Tesis para obtener el título de maestría de Investigación en Economía del Desarrollo. Facultad Latinoamericana de Ciencias Sociales, FLACSO Ecuador.

SIPA (Sistema de Información Pública Agropecuaria). (2021). Cifras Agroproductivas. Ministerio de Agricultura y Ganadería, Quito, Ecuador. Consultado en Octubre de 2022. http://sipa.agricultura.gob.ec/index.php/cifras-agroproductivas.

Tapia, C. (2015). Identificación de áreas prioritarias para la conservación de razas de maíz en la sierra del Ecuador. Tesis doctoral. Universidad Politécnica de Madrid. p 9-12

Varrotti, A. (2020). Siembra directa (SD). Argentina, 1940-2020 en Salomón, A., Muzlera, J. Diccionario del Agro Iberoamericano. https://www.researchgate.net/publication/344305317.

Velásquez C., J. S. & Araujo, M.A. (2021). Maíz forrajero INIAP- 180, fuente excepcional para ensilado e importante alternativa alimenticia para ganado lechero. Archivos Académicos USFQ, 38, 19.

Yang, N., Liu, J., Gao, Q., Gui, S., Chen, L., Yang, L., Huang, J., Deng, T., Luo, J., He, L., Wang, Y., Xu, P., Peng, Y., Shi, Z., Lan, L., Ma, Z., Yang, X., Zhang, Q., Bai, M., Li, S., & Yan, J. (2019). Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature genetics, 51(6), 1052–1059. https://doi.org/10.1038/s41588-019-0427-6.

Zamora, F. (2016). Estudio del efecto de la humedad remanente del suelo y densidad poblacional de híbridos de maíz (Zea mays L) sembrados en la época seca en la zona de Quevedo (Tesis de Ingeniería). Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador.

Zambrano, E. (2021). Avances en el desarrollo de híbridos y variedades de maíz (Zea mays L.) para el trópico seco del Litoral ecuatoriano. Archivos Académicos USFQ, 38, 13.

Zambrano, J., Velásquez, J., Peñaherrera, D., Sangoquiza, C., Cartagena, Y., Villacrés, E., Garcés, S., Ortíz, R., León, J., Campaña, D., López, V., Asaquibay, C., Nieto, M., Sanmartín G., Pintado, P., Yánez, C., & Racines, M. (2021). Guía para la producción sustentable de maíz en la Sierra ecuatoriana. INIAP, Manual No. 122. Quito, Ecuador. Recuperado 29 de octubre de 2022.

Adiloglu, A. and Adiloglu, S. (2006). The effect of boron (B) application on the growth and nutrient contents of maize in zinc (Zn) deficiency. Research Journal of Agriculture and Biological Sciences, 2(1), 1-4.

Alarcon, A. (2001). El boro como nutriente esencial. Tecnología de producción. Universidad Politécnica de Cartagena., 19.

Arnon, D.I. and Stout, P.R. (1939). The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physology, 14, 371-375.

Arvaidiya L.K. Raj V.C. Patel T.U. Arvadia M.K. (2012) Influence of plant population and weed management on weed flora and productivity of sweet corn (Zea mays). Indian Journal of Agronomy, 57 (2): 162-167.

Bajželj, B.; Richards, K.S.; Allwood, J.M.; Smith, P.; Dennis, J.S.; Curmi, E.; Gilligan, C.A. 2014. Importance of food-demand management for climate mitigation. Nat. Clim. Chang. 4, 924.

Barbazán, M., Bautes, C. Beux, L., Bordoli, M., Cano, J., Ernst, O., García A., García, F. y Quincke, A. (2011). Fertilización potásica en cultivos de secano sin laboreo en Uruguay: rendimiento según análisis de suelos. Agrociencia, Uruguay Volumen 15, N° Montevideo, Uruguay.

Bittman, S.; Hunt, D.E. and Kowalenko, C.G. (2004). Cover crops and relay crops. Pp. 89-94. In: S. Bittman and C.G. Kowalenko (eds.) Advances in Silage Corn Management. Pacific Field Corn Association, Agassiz, BC, Canada.

Brown (1970). Plant Analysis. Missouri Agrcultural Experimental Station Bulletin. SB881.

Christensen, L.A. (2002). Soil, nutrient and water management systems used in US corn production. Agriculture Information Bulletin No. 774, United States Department of Agriculture (USAID), USA.

Ciampitti, I. A., Camberato, J. J., Murrell, S. T., y Vyn, T. J. (2013). Maize Nutrient Accumulation and Partitioning in Response to Plant Density and Nitrogen Rate: I. Macronutrients. Agronomy Journal, 105(3), 783–795.

Cui, Y. and Wang, Q. (2006). Physiological responses of maize to elemental sulphur and cadmium stress. Plant, Soil and Environment, 52, 523-529.

Danforth, A. (2009). Corn Crop Production Growth, Fertilization and Yield. Editor: ISBN 978-1-60741- 955-6- Nova Science Publishers, Inc.

Diaz, H 2017. Influencia de tres fuentes potásicas aplicadas en dos épocas sobre el rendimiento del maíz amarillo duro (Zea mays L.), Universidad Católica Sedes Sapientiae. Huacho, Perú. Tesis de Investigacion.51p.

Driskell, B.N. and Richer, A.C. (1952). Correlation of plant tissue tests of corn, deficiency symptoms, and soil analyses on Jordan fertility. Soil Science Society of America Journal, 16, 270.

Driskell, B.N. and Richer, A.C. (1952). Correlation of plant tissue tests of corn, deficiency symptoms, and soil analyses on Jordan fertility. Soil Science Society of America Journal, 16, 270.

Drury, C.F.; Tan, C.S.; Gaynor, J.D.; Oloya, T.O. and Welacky, T.W. (1996). Influence of controlled drainage-subirrigation on surface and tile drainage nitrate loss. Jorunal of Environmental Quality, 25, 317-324.

Dwivedi, S.K.; Singh, R.S. and Dwivedi, K.N. (2002). Effect of sulphur and zinc nutrition on yield and quality of maize in Typic ustochrept soil of Kanpur. Journal of Indian Society of Soil Science, 50, 70-74.

Echeverría, H., Sainz, H., y Barbieri, P. (2014). Maíz y Sorgo. En Hernan. Echeverría & F. García (Eds.), Fertilidad de Suelos y Fertilización de Cultivos (2a ed., pp. 425–451). Buenos Aires - Argentina: INTA Editorial.

FAO. (1998). Guide to Efficient Plant Nutrition Management. Pp. 18. Food and Agriculture Organization (FAO), Rome, Italy.

FAO. 1996. The state of the world’s plant genetic resources: diversity and erosion. Third World Resurgence. Farmers’ Rights and the Battle for Agrobiodiversity. Issue No. 72/ 73 KDN PP6738/1/96. An excerpt from the Report on the State of the World’s Plant Genetic Resources prepared by the FAO Secretariat for the International Technical Conference on Plant Genetic Resources at Leipzig, Germany, 17–23 June 1996.

Feil, B.; Moser, S.B.; Jampaton, S. and Stamp, P. (2005). Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Science, 45, 516-523.

Flores, H. D. (2014). Guía técnica El cultivo de maíz. Obtenido de http://www.centa.gob.sv/docs/guias/granos%20basicos/GuiaTecnica%20Maiz%202014.pdf.

Francis, D.D.; Schepers, J.S., andVigil, M.F. (1993). Post anthesis nitrogen loss from corn. Agronomy Journal, 85:659-663.

Gruhn, P.; Goletti, F. and Yudelman, M. (2000). Integrated nutrient management, soil fertility, and sustainable agriculture: Current issues and future challenges. Food, Agriculture, and the Environment Discussion Paper 32. International Food Policy Research Institute, Washington, D.C. 20006 U.S.A.

Gudelj, V; Vallone, P; Galarza, C; Anselmi, H; Donadio, H; Salafia, ; Videla M, Horacio; C. 2017 Fertilización en. Resultado de experimentos de fertilización con nitrógeno, fósforo, azufre y zinc. Informe de Actualización Técnica en línea Nº 8, EEA INTA Marcos Juárez, paginas 45-51.

Hanway, J.J. (1962). Corn growth and composition in relation to soil fertility: III. Percentages of N, P and K in different plant parts in relation to stage of growth. Agronomy Journal, 54, 222-229.

Herrmann, A. and Taube, F. (2005). Nitrogen concentration at maturity - an indicator of nitrogen status in forage maize. Agronomy Journal, 97, 201-210.

Hilton, B.R.; Fixen, P.E. and Woodward, H.J. (1994). Effects of tillage, nitrogen placement, and wheel compaction on denitrification rates in corn cycle of corn-oats rotations. Journal of Plant Nutrition, 17, 1341-1757.

Hitsuda, K.; Yamada, M. and Klepker, D. (2005). Sulfur requirement of eight crops at early stages of growth. Agronomy Journal, 97, 155-159.

Ibrahim, S.A. and Kandil, H. (2007). Growth, yield and chemical constituents of corn (Zea mays L.) as affected by nitrogen and phosphorus fertilization under different irrigation intervals. Journal of Applied Science Research, 3, 1112-1120.

INIAP. (2012). Producción de maíz amarillo duro en la zona central del litoral ecuatoriano. Quevedo: Departamento de maíz de la estación experimental tropical Pichilingue.

INTA, 2008. Manejo de la fertilización del maíz. Disponible en:http://www.inta.gov.ar/ediciones/idia/cereales/ maiz08.pdf.

Johnston, A.M. and Dowbenko, R. (2004). Essential elements in corn. Pp.23-27. In: S. Bittman and C.G. Kowalenko (eds.) Advances in Silage Corn Management. Pacific Field Corn Association, Agassiz, BC, Canada.

Jones, C. and Jacobson, J. 2005. Plant Nutrition and Soil Fertility. Nutrient Management Module No. 2. Montana State University Extension Services. 4449-2.

Keerthisinghe, G.; Zapata, F. and Chalk, P. (2003). Plant Nutrition: Challenges and Task Ahead. Paper Presented in the IAF-FAO Agricultural Conference. Rome Italy, 26-28 March, 2003.

Kowalenko, C.G. (2004). Determining nutrients available in soil. Pp. 27-33. In: S. Bittman and C.G. Kowalenko (eds.) Advances in Silage Corn Management. Pacific Field Corn Association, Agassiz, BC, Canada.

Legg, J.O. and Meisinger, J.J. (1982). Soil nitrogen budget. Pp. 503-566. In: F.J. Stevenson (ed.) Nitrogen in agricultural soils. Agronomy – A series of Monographs. No. 22. ASA/CSSA/SSSA, Madison, WI, USA.

Lisuma, J.B.; Semoka, J.M.R. and Semu, E. (2006). Maize yield response and nutrient uptake after micronutrient application on a volcanic soil. Agronomy Journal, 98, 402-406.

Lithourgidis, A.S.; Matsi, T.; Barbayiannis, N. and Dordas, C.A. (2007), Effect of liquid cattle manure on corn yield, composition, and soil properties. Agronomy Journal, 99, 10411047.

Long, S.P.; Ort, D.R. 2010. More than taking the heat: Crops and global change. Curr. Opin. Plant Biol, 13, 240–247.

Ma, B.L.; Subedi, K.D. and Liu, A. (2006). Variation in grain N removal associated with management practices in maize production. Nutrient Cycling in Agroecosystems, 76, 6780.

Malakouti, M. J. (2008). The effects of micronutrients in ensuring efficient use of micronutrients. Turkish Journal of Agriculture and Forestry, 32, 215-220.

Melgar, R. y Torres Duggan, M. (2014) Manejo de la Fertilización en Maíz. Proyecto Fertilizar EEA INTA Pergamino; Proyecto Fertilizar. Disponible en: http://www.fertilizando.com/articulos/manejo%20de%20la%20fertilizacionen%20maiz .asp.

Muchow, R.C. (1998). Nitrogen utilization efficiency in corn and sorghum. Field Crops Research, 56, 209-216.

Pearson, C.J. and Jacobs, B.C. (1987). Yield components and nitrogen partitioning in maize in response to nitrogen before and after anthesis. Austrilian Journal of Agricultural Research, 38, 1001-1009.

Preetha, P S , Stalin P (2014). Response of Maize to Soil Applied Zinc Fertilizer under Varying Available Zinc Status of Soil. Indian Journal of Science and Technology, 7 : 939-944.

Rajcan, I. and Tollenaar, M. (1999). Source: sink ratio and leaf senescence in maize. I. Dry matter accumulation and partitioning during kernel filling. Field Crops Research, 60, 245253.

Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8, 34.

Ruiz Diaz, D.A.; Hawkins, J.A.; Sawyer, J.E. and Lundvall, J.P. (2008). Evaluation of in-season nitrogen management strategies for corn production. Agronomy Journal, 100, 1711-1719.

Schröder, J.J.; Neeteson, J.J. Oenema, O. and Struik, P.C. (2000). Does the crop or the soil indicate how to save nitrogen in corn production? Reviewing the state of the art. Field Crops Research, 66, 151-161.

Stevens, W.B.; Hoeft, R.G. and Mulvaney, R.L. (2005). Fate of nitrogen-15 in a long-term nitrogen rate study: I. Interactions with soil nitrogen. Agronomy Journal, 97, 1030-1045.

Subedi, K.D. and Ma, B.L. (2009). Assessment of some major yield-limiting factors on maize production in a humid temperate environment. Field Crops Research, 110, 21-26.

Subedi, K.D. and Sapkota, G.P. (2002). Integrated plant nutrient management (IPNM) in maize: Pilot testing of IPNM with farmers in Sindhupalanchowk. Pp.163-169. In: N.P. Rajbhandari, K.K. Ransom, K. Adhikari and A.F.P. Palmer (eds.) Sustainable maize production systems for Nepal. Proceedings of a Maize Symposium held December 3-5, 2001, Kathmandu, Nepal.

Subedi, K.D.; Ma, B.L. and Smith, D.L. (2006). Response of leafy and non-leafy maize hybrid to plant population densities and fertilizer nitrogen levels. Crop Science, 46, 1860-1869.

Programa de Maíz del CIMMYT. (2004). Enfermedades del maíz. Una guía para su identificación en el campo. Cuarta edición. México, D.F.; CIMMYT.

Syers, J.K. (1997). Manging soil for long-term productivity. Philosophical Transactions of the Royal Society of London (B) 352, 1011-1021.

Ummenhofer, C.C.; Meehl, G.A. 2017. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. Biol. Sci. 372, 20160135.

Valverde, R. (2010). Manejo de nutrientes por sitio específico con labranza mínima; experiencias en generación de recomendación de fertilización de maíz. En S. e. suelo, XII congreso ecuatoriano de la ciencia del suelo (pág. 8). Santo Domingo - Ecuador: Universidad Técnica Equinoccial.

Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. 2019. Chapter three—The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. In Advances Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA; Volume 153, pp. 121–173.

Worku, M.; Banziger, M.; Erley, G. S.; Friesen, D.; Diallo, A.O. and Horst, W.J. (2007). Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Science, 47, 519-528.

American Society of Agronomy (1989). Decision reached on sustainable ag. Madison, WI: American Society of Agronomy, Agronomy News (January).

Ammann, K. (2005). Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops. Trends in Biotechnology, 23, 388–394.

Brar, IS, Dixit, AK, Khurana, R. y Gautam, A. (2017). Estudios de Propiedades Físicas del Maíz (Zea mays L.) Semillas. Revista internacional de microbiología actual y ciencias aplicadas, 6(10), 963–970. https://doi.org/10.20546/ijcmas.2017.610.116.

Brown, T. (1996). Molecular Genetics and Evolution of Pesticide Resistance. Washington, DC: American Chemical Society.

Caprio, M. (2001). Source–sink dynamics between transgenic and non-transgenic habitats and their role in the evolution of resistance. Journal of Economic Entomology, 94, 698–705.

Carson, R. (1962). Primavera silenciosa. Boston, MA: Houghton miffin.

Casida, J. E. & Quistad, G. B. (1998). Golden age of insecticide research: past, present, or future? Annual Review of Entomology, 43, 1–16.

Cattaneo, M. G., Yafuso, C., Schmidt, C. et al. (2006). Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proceedings of the National Academy of Sciences of the USA, 103, 7571–7576.

Chamberlain, D. E., Freeman, S. N. & Vickery, J. A. (2007). The effects of GMHTcrops on bird abundance in arable fields in the UK. Agriculture, Ecosystems and Environment, 118, 350–356.

CIMYYT. (2019). Por qué MAÍZ. Recuperado de https://maize.org/why-maize/

Cook, S. M., Khan, Z. R. & Pickett, J. A. (2007). The use of push–pull strategies in integrated pest management. Annual Review of Entomology, 52, 375–400.

corn borer and corn rootworms: a survey of Midwestern farmer practices and perceptions. Journal of Economic Entomology, 98, 237–247.

Culliney, T. W. (2014). Crop losses to arthropods. In D. Pimentel & R. Peshin (Eds.), Integrated Pest Management: Pesticide Problems, Vol.3 (pp. 201–225). Netherland: Springer. https://doi.org/10.1007/978-94-007-7796-5_8.

Denholm, I. & Rowland, B. W. (1992). Tactics for managing pesticide resistance in arthropods, theory and practice. Annual Review of Entomology, 37, 91–112.

Diamond, J. M. (1997). Guns, Germs, and Steel: The Fates of Human Societies.NewYork:W.W.Norton.

DOA. (2019). Pest of corn. Retrieved from http://www.doa.gov.my/index/resources/aktiviti_sumber/sumber_awam/maklumat_biosekuriti/perosak_tanaman_jagung.pdf.

Duque, SO (2005). Hacer un balance de los resistentes a los herbicidas cultivos diez años después de la introducción. Manejo de plagas Ciencia, 61, 211–218.

Economic Research Service (2002). Adoption of Bioengineered Crops, Agricultural Economic Report No. 810. Washington, DC: US Department of Agriculture. Disponible en www.ers.usda.gov/publications/aer810/aer810.pdf.

Environmental Protection Agency (2001). Insect resistance management. In Biopesticides Registration Action Document Bacillus thuringiensis Plant-Incorporated Protectants. Washington, DC: US Environmental Protection Agency. Available at www.epa.gov/pesticides/biopesticides/pips/bt_brad2/4-irm.pdf.

Estadística. (2019). Producción de maíz en la región de Asia Pacífico en 2017, por país (en millones de toneladas). Recuperado, de https://www.statista.com/statistics/679403/asia-pacific-maize-production-by country/.

Evans, L. T. (2003). Agricultural intensification and sustainability. Outlook on Agriculture, 32, 83–89.

Falck-Zepeda, JB, Traxler, G. y Nelson, RG (2000). Sur plus distribución a partir de la introducción de una innovación biotecnológica. American Journal of Agricultural Economics, 82, 360–369.

FAOSTAT. (2017). La Organización de las Naciones Unidas para la Agricultura y la Alimentación: La base de datos estadísticos Disponible: http://faostat.fao.org.

Fishilevich, E., Vélez, A. M., Storer, N. P., Li, H., Bowling, A. J., Rangasamy, M., Siegfried, B. D. (2016). RNAi as a management tool for the western corn rootworm, Diabrotica virgifera virgifera. Pest Management Science, 72(9), 1562–1663. https://doi.org/10.1002/ps.4324.

Forrester, N. W. & Bird, L. J. (1996). The need for adaption to change in insecticide resistance management strategies: the Australian experience. In Molecular Genetics and Evolution of Pesticide Resistance, ed. T. Brown, pp. 160–168. Washington, DC: American Chemical Society.

Georghiou, G. P. (1986). The magnitude of the resistance problem. In Pesticide Resistance: Strategies and Tactics for Management, pp. 14–43. Washington, DC: National Academy Press.

Gepts, P. y Papa, R. (2003). Posibles efectos del trans(gen) fluir de los cultivos a la diversidad genética de las variedades locales y los parientes silvestres. Bioseguridad Ambiental Investigación, 2, 89–113.

Gray, M. (2006). European corn borer: a secondary pest for now? Pest Management and Crop Development Bulletin, 9, 261–262. Available at www.ipm.uiuc.edu/bulletin/article.php?id=530.

Heatherly, L. G., Elmore, C. D. & Spurlock, S. R. (2002). Weed management systems for conventional and glyphosate-resistant soybean with and without irrigation. Agronomy Journal, 94, 1419–1428.

Hemingway, J., Penilla R. P., Rodriguez, A. D. et al. (1997). Resistance management strategies in malaria vector mosquito control: a large-scale field trial in southern Mexico. Pesticide Science, 51, 375–382.

Herdt, R. W. (2006). Biotechnology in agriculture. Annual Review of Environmental Resources, 31, 265–295.

Hilbeck, A., Baumgartner, M., Fried, P. M. & Bigler, F. (1998). Effects of transgenic Bacillus thuringiensis cornfed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology, 27, 480–487.

James, C. (2006). Estado global de biotecnología/ GM comercializados Cultivos: 2006, ISAAA Brief No. 35. Ithaca, NY: Servicio Nacional para la Adquisición de Agro-Biotech Aplicaciones.

Knake, E. L. & Downs, J. P. (1979). The weed science pase of pest management. In Integrated Pest Management North Central Region Workshop Proceedings, St. Louis, MO, December 11–13, 1979, ed. S. Elwynn Taylor, Section I, pp. 33–37.

Kniss, A. R., Wilson, R. G., Martin, A. R., Burgener, P. A. & Feuz, D. M. (2004). Economic evaluation of glyphosateresistant and conventional sugar beet. Weed Technology, 18, 388–396.

Lobao, L. y Meyer, K. (2001). La gran transición agrícola: crisis, cambio y consecuencias sociales de la agricultura estadounidense del siglo XX. Revista anual de sociología,27, 103–124.

Losey, J. E., Rayor, L. S. & Carter, M. E. (1999). Transgenic pollen harms monarch larvae. Nature, 399, 214.

Lyson, TA (2002). Biotecnologías agrícolas avanzadas y agricultura sostenible. Trends in Biotechnol ogy, 20, 193–196.

Lyson, TA y Galés, R. (2005). Industrialización agrícola, leyes agrícolas anticorporativas y bienestar de la comunidad rural. Medio Ambiente y Planificación A, 37, 1479–1491.

Mathur, LM. (1991). Genética de la resistencia a insectos en maíz. En J. Sarkar KR, Singh HN y Sachan (Ed.), Maize Genetic Perspectives (págs. 238–250). Nueva Delhi: Sociedad India de Genética y Fitomejoramiento.

Morse, S., Bennett, R. e Ismael, Y. (2006). Ambiental impacto del algodón modificado genéticamente en Sudáfrica. Agricultura, Ecosistemas y Medio Ambiente, 117, 277–289.

Naranjo, S. E. (2005). Long-term assessment of the effects of transgenic Bt cotton on the function of the natural enemy community. Environmental Entomology, 34, 1211–1223.

Olmstead, D. L., Nault, B. A., & Shelton, A. M. (2016). Biology, Ecology, and Evolving Management of Helicoverpa zea (Lepidoptera: Noctuidae) in Sweet Corn in the United States. Journal of Economic Entomology, 109(4), 1667–1676. https://doi.org/10.1093/jee/tow125.

Ostlie, K. R., Hutchison, W. D., Hellmich, R. L. et al. (1997). Bt-Corn and European Corn Borer: Long-Term Success Through Resistance Management. North Central Regional Extension Publication NCR 602. St. Paul, MN: University of Minnesota.

Pedigo, L. P. & Rice, M. E. (2006). Entomology and Pest Management, 5th edn. Upper Saddle River, NJ: Pearson Prentice Hall.

Pilcher, C. D., Rice, M. E., Higgins, R. A. et al. (2002). Biotechnology and the European corn borer: measuring historical farmer perceptions and the adoption of transgenic Bt corn as a pest management strategy. Journal of Economic Entomology, 95, 878–892.

Prasifka, J. R., Heinz, K. M. & Minzenmayer, R. R. (2004a). Relationships of landscape, prey and agronomic variables to the abundance of generalist predators in cotton (Gossypium hirsutum) fields. Landscape Ecology, 19, 709–717.

Prasifka, J. R., Heinz, K. M. & Winemiller, K. O. (2004b). Crop colonization, feeding, and reproduction by the predatory beetle, Hippodamia convergens, asindicated by stable carbon isotope analysis. Ecological Entomology, 29, 226–233.

Qaim, M. & Traxler, G. (2005). Roundup Ready soybeans in Argentina: farm level and aggregate welfare effects.Agricultural Economics, 32, 73–86.

Rashid A. Suleiman, Kurt A. Rosentrater, & Carl J. Bern. (2013). Effects of deterioration parameters on storage of maize. In American Society of Agricultural and Biological Engineers (p. 131593351). Kansas City, Missouri. https://doi.org/10.13031/aim.20131593351.

Reddy, TR, Reddy, PN, Reddy, RR y Reddy, SS (2013). Manejo del Tizón de la Hoja Turcicum del Maíz Causado por Exserohilum Turcicum en el Maíz. Revista internacional de publicaciones científicas y de investigación, 3(10), 1–4.

Rice, M. E. & Ostlie, K. R. (1997). European corn borer management in field corn: a survey of perceptions and practices in Iowa and Minnesota. Journal of Production Agriculture, 10, 628–634.

Rice, M. E. (2004). Transgenic rootworm corn: assessing potential agronomic, economic, and environmental benefits. Plant Health Progress doi:10.1094/PHP-2004–0301-01-RV, available at www.plantmanagementnetwork.org/pub/php/review/2004/rootworm/.

Romeis, J., Dutton, A. & Bigler, F. (2004). Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Journal of Insect Physiology, 50, 175–183.

Rondón, SI & Gray, ME (2004). Desarrollo ovárico y preferencia oviposicional de la variante del gusano de la raíz del maíz occidental (Coleoptera: Chrysomelidae) en el centro este de Illinois. Revista de Entomología Económica, 97, 390–396.

Sandermann, H. (2006). Biotecnología vegetal: estudios de casos ecológicos sobre resistencia a herbicidas. Tendencias en la ciencia de las plantas, 11, 324–328.

Savary, S., Ficke, A., Aubertot, J. N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4, 519–537. https://doi.org/10.1007/s12571-012-0200-5.

Schaller, N. (1993). El concepto de sustentabilidad agrícola. Agricultura, Ecosistemas y Medio Ambiente, 46, 89– 97.

Schnable PS., Ware D., Fulton RS., Stein JC. (2009). El genoma del maíz B73: complejidad, diversidad y dinámica. Science 326:1112–1115 Shad RA., Chatha MQ., Nawaz H. (1993). Estudios de manejo de malezas en maíz. Pakistan Journal of Agricultural Research, 14(1): 44-50.

Shelton, AM, Zhao, JZ y Roush, RT (2002). Consecuencias económicas, ecológicas, de seguridad alimentaria y sociales del despliegue de plantas transgénicas Bt. Revisión anual de entomología, 47, 845–881.

Sneller, CH (2003). Impacto de los genotipos transgénicos y la subdivisión en la diversidad dentro del germoplasma de soja de élite de América del Norte. Ciencia de cultivos, 43, 409–414.

Stern, V. M., Smith, R. F., van den Bosh, R. & Hagen, K. S. (1959). the integration of chemical and biological control of the spotted alfalfa aphid (the integrated control concept). Hilgardia, 29(2), 81–101.

Tabashnik, B. E. & Croft, B. (1982). Managing pesticide resistance in crop–arthropod complexes: interactions between biological and operational factors. Environmental Entomology, 11, 1137–1144.

Tagne, A., Feujio, T. P., & Sonna, C. (2008). Essential oil and plant extracts as potential substitutes to synthetic fungicides in the control of fungi. In ENDURE International Conference 2008 (pp. 1–3).

tringam, G. R., Ripley, V. L., Love, H. K. & Mitchell, A. (2003). Transgenic herbicide tolerant canola: the Canadian experience. Crop Science, 43, 1590–1593.

Tsedaley, B., & Adugna, G. (2016). Detection of Fungi Infecting Maize (Zea mays L.) Seeds in Different Storages Around Jimma, Southwestern Ethiopia. Journal of Plant Pathology & Microbiology, 7(3), 1000338. https://doi.org/10.4172/2157-7471.1000338.

USDA. (2015). Trigo Mundial http:// Maíz (maíz), arroz y algodón. Recuperado de nue.okstate.edu/CropInformation/World_Wheat_Production.htm.

Wilson,T.A.,Rice,M.E.,Tollefson,J.J.&Pilcher,C.D. (2005). Transgenic corn for control of the European

Yorobe, JM & Quicoy, CB (2006). Impacto económico del maíz Bt en Filipinas. Científico agrícola filipino, 89, 258–267.

Anwar MP, Juraimi AS, Puteh A, Selamat A, Man A, Hakim MA (2011) Seeding method and rate influence on weed suppression in aerobic rice. Afr J Biotechnol 10:15259–15271.

Avola G, Tuttobene R, Gresta F, Abbate V (2008) Weed control strategies for grain legumes. Agron Sustain Dev 28:389–395.

Awan TH, Cruz PCS, Chauhan BS (2015) Agronomic indices, growth, yield-contributing traits, and yield of dry-seeded rice under varying herbicides. Field Crop Res 177:15–25.

Azmi M, Abdullah MZ (1998) A manual for the identification and control of padi angin (weedy rice) in Malaysia. MARDI Publication, Serdang, p. 18.

Azmi M, Baki BB (1995) The succession of noxious weeds in tropical Asian rice fields with emphasis on Malaysian rice ecosystem. Proceedings of 15th Asian Pacific Weed Science society Conference, Tsukuba, pp. 51–67.

Azmi M, Chin D, Vongsaroj P, Johnson D (2005) Emerging issues in weed management of direct-seeded rice in Malaysia, Vietnam, and Thailand. In: Toriyama K, Heong KL, Hardy B (eds) Rice is life: scientific perspectives for the 21st century. International Rice Research Institute, Philippines Proceedings world rice research conference, Tokyo and Tsukuba, November, 4–7, 2004, Japan, pp. 196–198.

Azmi M, Rezaul MR (2008) Weedy rice- biology, ecology and management. MARDI Publication, Kuala Lumpur, p. 56.

Bhurer KP, Yadav DN, Ladha JK, Thapa RB, Pandey K (2013) Effect of integrated weed manage-ment practices on performance of dry direct seeded rice (Oryza sativa L.). Agron J Nepal 3:53–63

Buhler DD (2002) Challenges and opportunities for integrated weed management. Weed Sci 50:273–280.

Buhler DD, Liebman M, Obrycki JJ (2000) Theoretical and practical challenges to an IPM approach to weed management. Weed Sci 48:274–280.

Cadena, D; Helfgott, S; Drouet, A; Cobos, F and Rojas, N. (2021). "Herbicides in the Irrigated Rice Production System in Babahoyo, Ecuador, Using Neutrosophic Statistics." Neutrosophic Sets and Systems 39, 1 (). https://digitalrepository.unm.edu/nss_journal/vol39/iss1/13.

Cerruffo, O. (2018). Manejo de malezas en arroz de riego (Oryza sativa L.) sembrado con semilla pre-germinada, en la zona de Babahoyo (Bachelor's thesis, Babahoyo: UTB, 2018).

Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agroecology. BioControl 46:229–260.

Chauhan BS (2013a) Effect of tillage systems, seeding rates, and herbicides on weed growth and grain yield in dry-seeded rice systems in the Philippines. Crop Prot 54:244–250.

Chauhan BS (2013b) Strategies to manage weedy rice in Asia. Crop Prot 48:51–56.

Chauhan BS, Abugho SB (2013) Effects of water regime, nitrogen fertilization, and rice plant density on growth and reproduction of lowland weed Echinochloa crus-galli. Crop Prot 54:142–147

Chauhan BS, Johnson DE (2009) Influence of tillage systems on weed seedling emergence pattern in rainfed rice. Soil Tillage Res 106:15–21

Chauhan BS, Johnson DE (2010a) The role of seed ecology in improving weed management strategies in the tropics. Adv Agron 105:221–262.

Chauhan BS, Johnson DE (2010b) Implications of narrow crop row spacing and delayed Echinochloa colona and Echinochloa crus-galli emergence for weed growth and crop yield loss in aerobic rice. Field Crop Res 117:177–182.

Chauhan BS, Mahajan G, Sardana V, Timsina J, Jat ML (2012) Productivity and sustainability of the rice-wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: problems, opportunities, and strategies. Adv Agron 117:315–369.

Chauhan BS, Opeña J (2012) Effect of tillage systems and herbicides on weed emergence, weed growth, and grain yield in dry-seeded rice systems. Field Crop Res 137:56–69

Chauhan BS, Opeña J (2013a) Implications of plant geometry and weed control options in designing a low-seeding seed-drill for dry-seeded rice systems. Field Crop Res 144:225–231

Chauhan BS, Opeña J (2013b) Weed management and grain yield of rice sown at low seeding rates in mechanized dry-seeded systems. Field Crop Res 141:9–15

Croughan TP (2003) Clearfield rice: it’s not a GMO. Louisiana Agric 46:24–26.

Davis AS, Liebman M (2003) Cropping system effects on giant foxtail (Setaria faberi) demography: I. Green manure and tillage timing. Weed Sci 51:919–929.

De Datta SK, Baltazar AM (1996) Weed control technology as a component of rice production systems. In: Auld BA, Kim KU (eds) Weed management in rice. FAO plant production and protection paper 139, Rome, pp. 27–52

Delouche JC, Burgos NR, Gealy DR, Zorilla-San Martin G, Labrada R, Larinde N (2007) Weedy rices: origin, biology, ecology and control. Food and Agriculture Organization of the United Nations, Rome.

Dickmann R, Melgarelo J, Loubiere P, Montagnon M (1997) Oxadiargyl: a novel herbicide for rice and sugarcane. In: Proceedings of the 1997 British Crop Protection Conference-Weeds, Brighton, pp. 51–57.

Espinoza, F. (2019). Mezclas de herbicidas de pre-emergencia y post-emergencia en el cultivo de arroz (Oryza sativa L.) de riego en la zona de Babahoyo (Bachelor's thesis, Babahoyo: UTB, 2019).

Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KH. (2011) The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493–506.

Fischer AJ, Ateh CM, Bayer DE, Hill JE (2000) Herbicide-resistant Echinochloa oryzoides and E. phyllopogon in California Oryza sativa fields. Weed Sci 48:225–230.

Fischer AJ, Hill JE (2004) Weed control programs. In: University of California Cooperative Extension and California Rice Research Board (ed) Rice production workshop. University of California, Division of Agriculture and Natural Resources, Oakland, pp. 9.1–9.10.

Fischer AJ, Ramirez HV, Lozano J (1997) Suppression of jungle rice [Echinochloa colona (L.) Link] by irrigated rice cultivars in Latin America. Agron J 89:516–552

Fofana B, Rauber R (2000) Weed suppression ability of upland rice under low-input conditions in West Africa. Weed Res 40:271–280.

Gealy DR, Mitten DH, Rutger JN (2003) Gene flow between red rice (Oryza sativa) and herbicide resistant rice (O. sativa): implications for weed management. Weed Technol 17:627–645.

Gibson KD, Fischer AJ, Foin TC, Hill JE (2002) Implications of delayed Echinochloa spp. Germination and duration of competition for integrated weed management in water-seeded rice. Weed Res 42:351–358.

Gibson KD, Foin TC, Hill JE (1999) The relative importance of root and shoot competition between water-seeded rice and water grass. Weed Res 39:181–190.

Hallett SC (2005) Where are the bioherbicides? Weed Sci 53:404–415.

Harding SS, Jalloh AB (2011) Evaluation of the relative weed competitiveness of upland rice varieties in Sierra Leone. African J Plant Sci 5:396–400

Heap I (2016) The international survey of herbicide resistant weeds. www.weedscience.org.

Ho NK (1991) Comparative ecological studies of weed flora in irrigated rice fields in the Muda area. Muda Agricultural Development Authority, Telok Chenga, Alor Setar Kedah, p. 97.

ICAR (2007) Vision 2025. NRCWS perspective plan. Indian Council of Agriculture Research, New Delhi

IRRI (2015) Herbicide-resistant rice. http://irri.org/news/hot-topics/herbicide-resistant-rice.

Jabran K, Chauhan BS (2015) Weed management in aerobic rice systems. Crop Prot 78:151–163.

Jabran K, Ehsanullah E, Hussain M, Farooq M, Babar M, Dogan MN, Lee DJ (2012a) Application of bispyribac-sodium provides effective weed control in direct-planted rice on a sandy loam soil. Weed Biol Manag 12:136–145.

Jabran K, Farooq M, Hussain M, Ehsanullah, Khan MB, Shahid M, Lee DJ (2012b) Efficient weeds control with penoxsulam application ensures higher productivity and economic returns of direct seeded rice. Int J Agric Biol 14:901–907.

Jabran K, Mahajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed control in agricultural systems. Crop Prot 72:57–65.

Jannink JL, Orf JH, Jordan NR, Shaw RG (2000) Index selection for weed suppressive ability in soybean. Crop Sci 40:1087–1094.

Johnson DE (1996) Weed management in small holder rice production in the tropics. http://ipmworld.umn.edu/chapters/johnson.htm.

Jordan N (1993) Prospects for weed control through crop interference. Ecol Appl 3:84–91.

Juraimi AS, Uddin Md K, Anwar Md P, Mohamed MTM, Ismail Mohd R, Azmi M (2013) Sustainable weed management in direct seeded rice culture: a review. Aust J Crop Sci 7:989–1002.

Karim SMR, Man AB, Sahid IB (2004) Weed problems and their management in rice fields of Malaysia: an overview. Weed Biol Manage 4:177–186.

Kristensen L, Olsen J, Weiner J (2008) Crop density, sowing pattern, and nitrogen fertilization effects on weed suppression and yield in spring wheat. Weed Sci 56:97–102.

Kumar V, Bellinder RR, Gupta RK, Malik RK, Brainard DC (2008) Role of herbicide-resistant rice in promoting resource conservation technologies in rice–wheat cropping systems of India: a review. Crop Prot 27:290–301.

Li SS, Wei SH, Zuo RL, Wei JG, Qiang S (2012) Changes in the weed seed bank over 9 consecutive years of rice-duck farming. Crop Prot 37:42–50.

Lotz LAP, Wallinga J, Kropff MJ (1995) Crop-weed interactions: quantification and prediction. In: Glen DM, Greaves MP, Anderson HM (eds) Ecology and integrated farming systems. Wiley and Sons, Chichester, pp. 31–47.

Lovato, R; Giménez, L & López, M. (2022). Ecología de comunidades de malezas de arroz (Oryza sativa L.) como aporte hacia una agricultura sustentable. Ediciones INTA.

Mahajan G, Chauhan B, Johnson D (2009) Weed management in aerobic rice in Northwestern Indo-Gangetic Plains. J Crop Improv 23:366–382.

Mahajan G, Chauhan BS (2011) Effects of planting pattern and cultivar on weed and crop growth in aerobic rice system. Weed Technol 25:521–525.

Mahajan G, Chauhan BS (2013a) The role of cultivars in managing weeds in dry-seeded rice production systems. Crop Prot 49:52–57

Mahajan G, Chauhan BS (2013b) Herbicide options for weed control in dry-seeded aromatic rice in India. Weed Technol 27:682–689

Matloob A, Khaliq A, Chauhan BS (2015) Weeds of direct-seeded rice in Asia: problems and opportunities. Adv Agron 130:291–336.

Mazid MA, Jabber MA, Mortimer M, Wade LJ, Riches CR, Orr AW (2003) Improving rice-based cropping systems in north-west Bangladesh: diversification and weed management. In: The BCPC International Congress, Crop Prod Prot, Hampshere, UK, BCPC publisher, pp. 1029–1034.

Mennan H, Ngouajio M, Sahin M, Isik D, Altop EK (2012) Competitiveness of rice (Oryza sativa L.) cultivars against Echinochloa crus-galli (L.) Beauv. in water-seeded production systems. Crop Prot 41:1–9.

Menne, H. (2013). Classification of Herbicides According to Side of Action. Ficha Informativa, Comité de Acción contra la Resistencia a Herbicidas. Obtenido de http://www.weedscience.org/Documents/ShowDocuments.aspx?DocumentID=1193

mith RJ Jr (1991) Integration of biological control agents with chemical pesticides. In: TeBeest DO (ed) Microbial control of weeds. Chapman and Hall, New York, pp. 189–208.

Moody K, Cordova VG (1985) Wet-seeded rice. In: Women in rice farming. International Rice Research Institute, Los Baños, pp. 467–480

Morcote, H. (2013). Eficacia y selectividad de Amicarbazone aplicado en diferentes dosis en caña panelera (Saccharum officinarum L.), en Güepsa, Santander. Ciencia y Agricultura, X(1), 47-56.

Motlagh MRS (2011) Fusarium Equiseti (corda) Saccardo as biological control agent of barnyardgrass (Echinochloa crus-galli L.) in rice fields. J Food Agric Environ 9:310–313.

Moukoumbi YD, Sie M, Vodouhe R, Bonou W, Toulou B, Ahanchede A (2011) Screening of rice varieties for their weed competitiveness. Afr J Agric Res 6:5446–5456.

Mubeen K, Nadeem M, Tanveer A, Jhala A (2014) Effects of seeding time and weed control methods in direct seeded rice (Oryza sativa L.). J Anim Plant Sci 24:534–542.

Mukherjee D (2004) Weed management in rice. Agric Today 11:26–27.

Namuco OS, Cairns JE, Johnson DE (2009) Investigating early vigour in upland rice (Oryza sativa L.): part I. Seedling growth and grain yield in competition with weeds. Field Crop Res 113:197–206.

Ni H, Moody K, Robles RP, Paller EC, Lales JS (2000) Oryza sativa plant traits conferring competitive ability against weeds. Weed Sci 48:200–204.

Nichols V, Verhulstb N, Coxb R, Govaerts B (2015) Weed dynamics and conservation agricultura principles: a review. Field Crop Res 183:56–68.

Oerke EC (2006) Crop losses to pests. J Agric Sci 144(01):31–43.

Oliver LR, Klingaman TE, McClelland M, Bozsa RC (1993) Herbicide systems in stale seedbed soybean (Glycine max) production. Weed Technol 7:816–823.

Oraze MJ, Grigarick AA (1992) Biological control of ducksalad (Heteranthera limosa) by wáterlily aphid (Rhopalosiphum nymphaeae) in rice (Oryza sativa). Weed Sci 40:333–336.

Ordeñana, R. (2013). Bioecología y Fisiogenética de Malezas. Babahoyo, Los Rìos, Ecuador: Editoral Malena.

Powles SB, Yu Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317–347.

Ramírez, J. (2014). Dinámica poblacional de malezas del cultivo de arroz en las zonas centro, meseta y norte del departamento del Tolima. Tesis o trabajo de Investigación presentado como requisito para optar al título de Magister en Ciencias Agrarias-Malherbología, Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Bogotá, Colombia.

Rao AN (2011) Integrated weed management in rice in India. In: Rice Knowledge Management Portal (RKMP). Directorate of Rice Research, Rajendranagar, pp. 1–35.

Rao AN, Johnson DE, Sivaprasad B, Ladha JK, Mortimer AM (2007) Weed management in direct- seeded rice. Adv Agron 93:153–255.

Rao AN, Moody K (1994) Ecology and management of weeds in farmers’ direct seeded rice (Oryza sativa L.) fields. International Rice Research Institute, Los Baños.

Reyes Borja, W. O., Santelices Villalta, J. C., Quispe Sandoval, M. F., & Cobos Mora, F. J. (2020). Variación hereditaria de líneas F2 de arroz (Oryza sativa L. ssp. indica) derivadas de un parental femenino portador del gen Clearfield. Journal of Science and Research, 5(CININGEC), 275–293. Recuperado a partir de https://revistas.utb.edu.ec/index.php/sr/article/view/1013.

Rocafuerte, Á. (2019). Herbicidas postemergentes en el manejo de control de malezas y su efecto en el rendimiento del cultivo de arroz (Oryza sativa L.) (Bachelor's thesis, Babahoyo: UTB, 2019).

Rodenburg J, Johnson DE (2009) Weed management in rice-based cropping systems in Africa. Adv Agron 103:149–218.

Roder W (2001) Slash-and-burn rice systems in the hills of northern Lao PDR. In: Description, challenges, and opportunities. International Rice Research Institute, Los Baños, p. 201.

Saito K, Azoma K, Rodenburg J (2010b) Plant characteristics associated with weed competitiveness of rice under upland and lowland conditions in West Africa. Field Crop Res 116:308–317.

Saito K, Phanthaboon K, Shiraiwa T, Horie T, Futakuchi K (2010a) Genotypic variation in ability to recover from weed competition at early vegetative stage in upland rice. Plant Prod Sci13:116–120.

Shrestha A, Lanini T, Mitchell J, Wright S, Vargas R, Tulare UCCE, County M (2005) An update of weed management issues in conservation tillage systems. California Weed Science Society Proceedings, Monterey, CA, pp. 58–63.

Sindhu PV, Thomas CG, Abraham CT (2010) Seed bed manipulations for weed management in wet seeded rice. Indian J Weed Sci 42:173–179

Singh G, Singh Y, Singh VP, Johnson DE, Mortimer M (2005a) System level effects in weed management in rice-wheat cropping in India. BCPC International Congress on Crop Science and Technology-2005. SECC, Glasgow.

Singh M, Bhullar MS, Chauhan BS (2015) Influence of tillage, cover cropping, and herbicides on weeds and productivity of dry direct-seeded rice. Soil Tillage Res 147:39–49.

Singh S, Bhushan L, Ladha JK, Gupta RK, Rao AN, Shivaprasad B (2006) Weed management in dry-seeded rice (Oryza sativa) cultivated on furrow irrigated raised bed planting system. Crop Prot 25:487–495.

Singh S, Chhokar RS, Gopal R, Ladha JK, Gupta RK, Kumar V, Singh M (2009) Integrated weed management: a key to success for direct–seeded rice in the Indo-Genetic Plains. In: Ladha JK, Singh Y, Errenstein O, Hardy B (eds) Integrated crop and resource management in the rice – wheat system of South Asia. International Rice Research Institute, Los Banos, pp. 261–278

Singh Y, Singh G (2008) Cropping systems and weed flora of rice and wheat in the Indo Gangetic plains. In: Singh Y, Singh VP, Chauhan B, Orr A, Mortimer AM, Johnson DE, Hardy B (eds) Direct seeding of rice and weed management in irrigated rice wheat cropping system of the Indo Gangetic Plains. Los Banos, International Rice Research Institute and Pantnagar: Directorate of Experiment Station, G B Pant University of Agriculture and Technology, pp. 33–43.

Smith RJ Jr, Sullivan JD (1980) Reduction of red rice grain in rice fields by winter feeding of ducks. Arkansas Farm Res 29:3

Subramanian E, Martin GJ (2006) Effect of chemical, cultural and mechanical methods of weed control on wet seeded rice. Indian J Weed Sci 38:218–220.

Suria ASMJ, Juraimi AS, Rahman MM, Man AB, Selamat A (2011) Efficacy and economics of different herbicides in aerobic rice system. Afr J Biotechnol 10:8007–8022.

Talbert RE, Burgos NR (2007) History and management of herbicide-resistant barnyardgrass (Echinochloa crus-galli) in Arkansas rice. Weed Technol 21:324–331.

Timsina J, Haque, Chauhan BS, Johnson DE (2010) Impact of tillage and rice establishment methods on rice and weed growth in the rice-maize-mungbean rotation in northern Bangladesh. Presented at the 28th International Rice Research Conference, 8–12 November 2010. Hanoi, Vietnam OP09: Pest, Disease, and Weed Management

Vanegas, F., & Muñoz, R. (1984). Malezas Tropicales del Litoral Ecuatoriano. Institución Nacional de Investigaciones Agropecuarias, Estación Experimental "Pichilingue". Quito, Ecuador: INIAP.

Zhao DL, Atlin GN, Bastiaans L, Spiertz JHJ (2006) Cultivar-weed competitiveness in aerobic rice: heritability, correlated traits, and the potential for indirect selection in weed-free environment. Crop Sci 46:372–380.

Zhao DL, Bastiaans L, Atlin GN, Spiertz JHJ (2007) Interaction of genotype × management on vegetative growth and weed suppression of aerobic rice. Field Cro.

Acevedo, E. 2003. Sustentabilidad en cultivos anuales: cero labranzas, manejo de rastrojos. Santiago, Chile: LOM.

Ali A, Ghani MI, Haiyan D. 2020. Garlic substrate induces cucumber growth development and decreases Fusarium wilt through regulation of soil microbial community structure and diversity in replanted disturbed soil. Int J Mol Sci.21(17):20.

Ali A, Ghani MI, Haiyan D. 2020. Garlic substrate induces cucumber growth development and decreases Fusarium wilt through regulation of soil microbial community structure and diversity in replanted disturbed soil. Int J Mol Sci.21(17):20.

Ali U, Shaaban M, Bashir S. 2020. Effect of rice straw, biochar and calcite on maize plant and Ni bio-availability in acidic Ni contaminated soil. J Environ Manage.259:109674

Alsafadi, K., Mohammed, S.A., Ayugi, B., Sharaf, M. & Harsányi, E. (2020) Spatial–temporal evolution of drought characteristics over Hungary between 1961 and 2010. Pure and Applied Geophysics, 177(8), 3961–3978. https://doi.org/10.1007/s00024-020-02449-5.

Arocena, J.M. and Opio, C., 2003. Prescribed fire induced changes in properties of sub-boreal forest soils. Geoderma, 113: 1-16.

Assunta, M.P., Giacomo, G., Sergio, L., Stefano, D. and Piero, P., 2004. Effect of fire on soil C, N and microbial biomass. INRA, EDP Sciences 2004, France. Agronomy for Sustainable Development, 24: 47-53.

Bao HY, Wang JF, Li J. 2019. Effects of corn straw onmdissipation of polycyclic aromatic hydrocarbons and potential application of backpropagation artificial neural network prediction model for PAHs bioremediation. Ecotoxicol Environ Safety.;186:109745.

Beuchelt, T.D., C.T. Camacho Villa, L. Göhring, V.M. Hernández Rodríguez, J. Hellin, K. Sonder, and O. Erenstein. 2015. Social and income trade-offs of conservation agriculture practices on crop residue use in Mexico’s central highlands. Biomass use trade-cereal. Cropping Systems Implications Developments World 134:61–75. doi:10.1016/j.agsy.2014.09.003.

Bodi, M.B., Mataix-Solera, J., Doerr, S.H. and Cerda, A., 2011. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma, 160: 599–607.

Boerner, R.E.C., Hart, S. and Huang, J., 2009. Impacts of Fire and Fire Surrogate treatments. Ecological Applications, 19(2): 338-358.

Bohn, H.L, McNeal, B.L. and O'Connor, G.A., 2001. Soil Chemistry. 3rd Edition. John Wiley and Sons, Inc., New York, USA.

Boonlertnirun K and Jompuk C., 2011. Nitrogen use Efficiency and Low Nitrogen Tolerance in Waxy Corn. Khon Kaen Agriculture Journal. 39, 231-240.

Brady, N.C. and Weil, R.R., 1999. The Nature and Properties of Soils. 12th Edition. Upper Saddle River, Prentice-Hall Inc., New Jersey, USA.

Brankatschk G, Finkbeiner M. 2015. Modeling crop rotation in agricultural LCAs — challenges and potential solutions. Agric Syst.138:66–76.

Butterly CR, Baldock JA, Tang C.2012. The contribution of crop residues to changes in soil pH under field conditions. Plant Soil.366(1–2):185–198.

Campbell, G.S, Jungbauer, Jr.J.D, Bristow, K.L. and Hungerford, R.D., 1995. Soil temperature and water content beneath a surface fire. Soil Science; 159: 363-74.

Cao QJ, Li G, Yang FT.2021. Eleven-year mulching and tillage practices alter the soil quality and bacterial community composition in Northeast China. Arch Agron Soil Sci. 2021;1–16. DOI:10.1080/03650340.2021.1890719.

Castillo, F. & Navarro, H., 2007. Evaluación de cinco especies vegetales como cultivos de cobertura en valles altos de México. Revista fitotecnia mexicana, pp. 97-119.

Certini, G., 2005. Effect of fire on properties of soil . A review. Oecologia, 143: 1-10.

Chen HD, Chen XL, Qin YQ. 2017. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: pore structure, aromaticity and gasification activity. Bioresour Technol.228:241–249.

Chen S, Xu CM, Yan JX.2016. The influence of the type of crop residue on soil organic carbon fractions: an 11-year field study of rice-based cropping systems in southeast China. Agric, Ecosyst & Environ.2016;223:261–269

Cherubin MR, Oliveira DMD, Feigl BJ.2018. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: a review. Sci Agric.75(3):255–272.

Choromanska, U. and DeLuca, T.M., 2002. Microbial activity and nitrogen mineralization in forest mineral soils following heating: Evaluation of post-fire effects. Soil Biology and Biochemistry, 34, 263-271.

De Luis, M.; González J.C. y Raventós J. 2003. Efectos erosivos de una lluvia torrencial en suelos afectados por quemas experimentales de diferente severidad. Cuaternario y Geomorfologia 17 (3-4): 57 - 67.

Debano, L; Neary, D. y FFOLLIOTT, P. 2005. Wildland Fire in Ecosystems. Effects of Fire on Soil and Water: Soil Physical Properties. USDA Forest Service Gen. Tech. Rep. RMRS-GTR-42-vol. 4. pp: 29-51.

Devkota NR and Rerkasem B., 2000. Effects of Cutting on the Nitrogen Economy and Dry Matter Yield of Lablab Grown Under Monoculture and Intercropped with Maize in Northern Thailand. Experimental Agriculture. 36, 459-468.

Dockersmith, I., Giardina, C. & Sandford, R. J., 2000. Persistence of tree related patterns in soil nutrients following slash -and- burn disturbance in the tropics. Plant and Soil, Volumen 247, p. 220.

Doerr, S., Shakesby, R.A. and MacDonald, L.H., 2008. Soil water repellency: a key factor in post-fire erosion. pp. 197-224, In: Cerda, A. and Robichaud, P.R. (eds.), Fire Effects on Soils and Restoration Strategies. Science Publishers, Inc., Enfield, New Hampshire, USA.

Doerr, S., Woods, S. and Martin, D., 2009. Natural background’ soil water repellency in conifer forests of the north-western USA: Its prediction and relationship to wildfire occurrence. Journal of Hydrology, 371(1-4): 12-21.

Dong SD, Wan SQ, Kang YH. 2021. Different mulching materials influence the reclamation of saline soil and growth of the Lyciumbarbarum L. under drip-irrigation in saline wasteland in northwest China. Agr Water Manage.247:10.

Elferink, M., and F. Schierhorn. 2016. Global demand for food is rising. Can we meet it? Harvard Business Review. https://hbr.org/2016/04/globaldemand-for-food-is-rising-can-we-meet-it.

El-Mergawi RA. 2019. Suitability of high doses of phenolic acids for controlling Corchorus olitorius and phalaris minor weeds. Gesunde Pflanz.71(4):261–269.

Elyamine AM, Moussa MG, Afzal J. 2019. Modified rice straw enhanced cadmium (II) immobilization in soil and promoted the degradation of phenanthrene in co-contaminated soil. Int J Mol Sci.20(9):17.

Emerson, W.W., 1995. Water retention, organic carbon and soil texture. Australian Journal of Soil Research, 33:241-251.

Fernandez, I, Cabaneiro, A. and Carballas, T., 1997. Organic matter changes after a wildfire in an atlantic forest soil and comparison with laboratory soil heating. Soil Biology and Biochemistry, 29(1): 1-11.

FHIA (Fundación Hondureña de Investigación Agrícola). 2011. Guía sobre prácticas de conservación de suelos. Proyecto Promoción de Sistemas Agroforestales de Alto Valor con Cacao en Honduras. http://www.fhia.org.hn/dowloads/guia_conservacion_de_suelos.pdf.

Flores, G., 2005. Manejo de humedad del suelo en zonas secas, Honduras: Secretaría de Agricultura y Ganadería (SAG).

Fontaine D, Eriksen J, Sørensen P.2020. Cover crop and cereal straw management influence the residual nitrogen effect. Eur J Agron.118:126100.

Gao F, Hu J, Ren BZ. 2020. Improving soil properties and grains yield of winter wheat and summer corn under residue management strategies. Agron J.112 (5):4287–4302.

García, V. (2003). Evaluación de un modelo predictivo sobre el efecto de la temperatura y humedad en la descomposición de rastrojo de trigo. Agricultura Técnica.

García-Marco, S. and González-Prieto, S., 2008. Short- and medium- term effects of fire and fire-fighting chemicals on soil micronutrient availability. The Science of Total Environment, 407: 297-303.

Giller K.E., Beare M.H., Lavell P., Izac and Swift M.J., 1997. Agricultural Intensification, Soil Biodiversity and Agro Ecosystem Function. Applied Soil Ecology 6, 3-16.

Giovannini, G., Lucchesi, S. and Giachetti, M., 1990. Effect of heating on some chemical parameters related to soil aggregation and erodibility. Soil Science, 149, 344-350.

GOH, K. M., & Kumar, K. 2000. Crop Residues and Management Practices: Effects on Soil Quality, Soil Nitrogen Dynamics, Crop Yield and Nitrogen Recovery. Advances in Agronomy.

Gozubuyuk, Z., Sahin, U. & Celik, A. (2020) Tillage and Irrigation Impacts on the Efficiency of Fossil Fuel Utilization for Hungarian Vetch Production and Fuel-Related CO2 Emissions. Environmental Engineering Science, 37(3), 201–213. https://doi.org/10.1089/ees.2019.0302.

Grzyb A, Wolna-Maruwka A, Niewiadomska A. 2020. Environmental factors affecting the mineralization of crop residues. Agronomy.10(12):18.

Gudynas, E. & Ghione, S., 2010. Agricultura y ganadería, biodiversidad, cambio climático: estrechamente vinculados. LEISA revista de agroecología, p. 26.4.

Guo ZB, Liu H, Hua KK. 2018. Long-term straw incorporation benefits the elevation of soil phosphorus availability and use efficiency in the agroecosystem. Span J Agric Res.;16(3):12

Hal Tenhoff, H. (2005). Manual de efectos del Fuego y Evaluación de Daños. uso y manejo de fuego en áreas agrícolas y forestales del departamento de Petén. Proyecto FAO TCP/GUA/2903.

Harrison, P., 2002. Agricultura mundial: hacia los años 2015/2030. Informe resumido, Roma, Italia: FAO, Organización de las Naciones Unidas para la Agricultura y la Alimentación.

Hauck, C., 1974. Introducción. En: La agricultura migratoria y la conservación de suelos en África. s.l.:FAO. Boletín de suelos, pp. 1-5.

Hernández, I. y López, D. 1999. Efectos de la quema sobre el ciclo del fósforo en una sabana de trachypogon. Ecotropicos 12(1): 3-8.

Hernández, T.;García, C. y ReinhardT, I. 1997. Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soils. Biology and Fertility of soils 25:109-116.

Hubbert, K.R. and Oriol, V., 2005. Temporal fluctuations in soil water repellency following wildfire in chaparral steeplands, southern California. International Journal of Wildland Fire, 14: 439-447.

Huffman, E.L., MacDonald, L.H. and Stednick, J.D., 2001. Strength and persistence of fire-induced soil hydrophobicity under ponderosa and lodgepole pine, Colorado Front Range. Hydrological Processes, 15: 2877-2892.

Huo LL, Meng HB, Tian YS. 2012. Experimental study on physical property of smashed crop straw. Trans Chin Soc Agric Eng.28(11):7.

Jin ZQ, Shah TR, Zhang L. 2020. Effect of straw returning on soil organic carbon in rice–wheat rotation system: a review. Food and Energy Secur.;9(2):13.

Jin ZQ, Shah TR, Zhang L.2020. Effect of straw returning on soil organic carbon in rice–wheat rotation system: a review. Food and Energy Secur.9(2):13.

Jorge, R., 2015. Técnica para el mejoramiento y acondicionamiento de los rastrojos. INIA.

Ketterings, Q.M. and Bigham, J.M., 2000. Soil color as an indicator of slash-and-burn fire severity and soil fertility in Sumatra, Indonesia. American Journal of Soil Science Society, 64: 1826-1833.

Lal, R. (1997). Long-term tillage and maize monoculture effects on a tropical Alfisol in western Nigeria. I. Crop yield and soil physical properties. Soil Till. Res.

Leighton-Boyce, G., Doerr, S.H., Walsh, R.P.D., Shakesby, R.A., Ferreira, A.J.D., Boulet, A. and Coelho, C.O.A., 2003. Spatio-temporal patterns of soil water repellency in Portuguese eucalyptus forests and implications for slope hydrology. pp. 111-116, In: Servant, E., Najem, W., Leduc, C. and Shakeel, A. (eds.), Hydrology of Mediterranean and Semiarid Regions. IAHS Publication 278.

Letey, J., 2001. Causes and consequences of fire-induced soil water repellency. Hydrological Processes, 15:2867-2875.

Li GH, Chen HZ. 2014. Synergistic mechanism of steam explosion combined with fungal treatment by phellinus baumii for the pretreatment of corn stalk. Biomass Bioenergy.67:1–7

Li, T., Baležentis, T., Makutėnienė, D., Streimikiene, D. & Kriščiukaitienė, I. (2016) Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction. Applied Energy, 180, 682–694. https://doi.org/10.1016/j.apenergy.2016.08.03.

Lqbal A, Shah F, Hamayun M. 2019. Plants are the possible source of allelochemicals that can be useful in promoting sustainable agriculture. Fresenius Environ Bull.28(2A):1052–1061.

Malobane ME, Nciizah AD, Mudau FN.2020. Tillage, crop rotation and crop residue management effects on nutrient availability in a sweet sorghum-based cropping system in marginal soils of South Africa. Agronomy.10(6):13. .

Marcos, E., Tarrega, R. and Luis, E., 2007. Changes in a Humic Cambisol heated (100-500 °C) under laboratory conditions: The significance of heating time. Geoderma, 138: 237-243.

Martínez, F. (2002). Gestión y tratamiento de residuos agrícolas.Infoagro.

Maturana, M., & Acevedo, E. (2003). Cambios en la fertilidad del suelo asociados a cero labranza. Laboratorio de Relación Suelo-Agua-Planta. Santiago: Universidad de Chile.

Migongo, E., 2013. ¿Cómo obtener ventajas ecológicas y económicas simultáneamente?: La creación de cercas vivas de nopal en Ecuador, Loja: UNESCO.

Mohammed, S., Gill, A.R., Alsafadi, K., Hijazi, O., Yadav, K.K. & Khan, A.H. (2021) An overview of greenhouse gases emissions in Hungary. Journal of Cleaner Production, 127865. https://doi.org/10.1016/j.jclepro.2021.127865.

Neary, D.G., Ryan, K.C. and DeBano, L.F., 2008. Wildland Fire in Ecosystems: Effects of Fire on Soils and Water. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, USA.

Nie SA, Lei XM, Zhao LX. 2018. Fungal communities and functions response to long-term fertilization in paddy soils. Appl Soil Ecol.130:251–258.

Nwadialo, B.E. and Mbagwu, J.S.C., 1991. An analysis of soil components active in microaggregate stability. Soil Tech., 4: 343-350.

Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. (2016) Greenhouse gas emissions from soils—A review. Chemie der Erde-Geochemistry, 76(3), 327–352. https://doi.org/10.1016/j.chemer.2016.04.002.

Oguntunde, P.G., Fosu, M., Ajayi, A.E. and Giesen, N., 2004. Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol. Fertil. Soils, 39: 295-299.

Otte BA, Rice CP, Davis BW. 2020. Phenolic acids released to soil during cereal rye cover crop decomposition. Chemoecology.30(1):25–34.

Palansooriya KN, Shaheen SM, Chen SS. 2020. Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ Int.134:105046.

Pan XY, Shi RY, Hong ZN.2020. Characteristics of crop straw-decayed products and their ameliorating effects on an acidic Ultisol. Arch Agron Soil Sci. 2020;1–14. DOI:10.1080/03650340.2020.1805104.

Pan XY, Xu RK, Nkoh JN. 2021. Effects of straw decayed products of four crops on the amelioration of soil acidity and maize growth in two acidic Ultisols. Environ Sci and Pollut Res Int.28(5):5092–5100.

Perry, J. y otros, 2016. How natural Forest Conversion Affects Insect Biodiversity in the Peruvian Amazon: Can Agroforestry Help?. Forests, 7(4), p. 82.

Pinochet, D. 2004. Fósforo Olsen y su relación con la nutrición de los cultivos en los agroecosistemas chilenos. Instituto de Ingeniería Agraria y Suelos. Universidad Austral de Chile.

Platis, D.P., Anagnostopoulos, C.D., Tsaboula, A.D., Menexes, G.C., Kalburtji, K.L. & Mamolos, A.P. (2019) Energy analysis, and carbon and water footprint for environmentally friendly farming practices in agroecosystems and agroforestry. Sustainability, 11(6), 1664. https://doi.org/10.3390/su11061664.

Reichert, J.M. and Darrell, L., 1994. Aggregate stability and rain-impacted sheet erosion of air-dried and prewetted clayey surface soils under intense rain. Soil Science, 158(3): 159-169.

Rezig FAM, Mubarak AR, Ehadi EA. 2013. Impact of organic residues and mineral fertilizer application on soil–crop system: II soil attributes. Arch Agron Soil Sci.;59(9):1245–1261.

Rigon JPG, Franzluebbers AJ, Calonego JC. 2020. Soil aggregation and potential carbon and nitrogen mineralization with cover crops under tropical no-till. J Soil Water Conser.75(5):601–609.

Rodríguez, J. 2001. Fertilización de los cultivos. Santiago, Chile. LOM. 117p.

Rodríguez. (1993). La fertilización de los cultivos, un Método racional. Santiago: Universidad Católica de Chile.

SAG, S. d. A. y. G., 2006. Manejo de Rastrojos y Labranza Conservacionista. En: Honduras: Tecnologías alternativas para pequeños agrcultores agrarios.

Schnitzler F, Lavorenti A, Berns AE. 2007. The influence of maize residues on the mobility and binding of benazolin: investigating physically extracted soil fractions. Environ Pollut.147(1):4–13.

Singh G, Dhakal M, Yang L. 2020. Decomposition and nitrogen release of cover crops in reduced- and no-tillage systems. Agron J.;112(5):3605–3618.

Singh, D., Herlin, I., Berroir, J.P., Silva, E.F. and Simoes Meirelles, M., 2004. An approach to correlate NDVI with soil color for erosion process using NOAA/AVHRR DATA. Advances in Space Research, 33:328-332.

Song XL, Sun RJ, Chen WF. 2020. Effects of surface Straw mulching and buried straw layer on soil water content and salinity dynamics in saline soils. Can J Soil Sci.100(1):58–68.

Su Y, Kwong RWM, Tang WL. 2021. Straw return enhances the risks of metals in soil?. Ecotoxicol Environ Safety.207:111201.

Su Y, Lv JL, Yu M. 2020. Long-term decomposed Straw return positively affects the soil microbial community. J Appl Microbiol.128(1):138–150.

Su Y, Yu M, Xi H. 2020. Soil microbial community shifts with long-term of dif-ferent straw return in wheat-corn rotation system. Sci Rep.10(1):6360

Terefe Wondafrash, Mariscal, S.I., Gomez, M.V. and Espejo, S.R., 2005. Relationship between soil colour and temperature in the surface horizon of Mediterranean soils: A laboratory study. Soil Science, 170(7): 495-503.

Terefe Wondafrash, Mariscal, S.I., Peregrina, F. and Espejo, R., 2008. Influence of heating on various properties of six Mediterranean soils: A laboratory study. Geoderma, 143: 273-280.

Tessum, C.W., Hill, J.D. & Marshall, J.D. (2014) Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States. Proceedings of the National Academy of Sciences, 111(52), 18490–18494. https://doi.org/10.1073/pnas.1406843111.

Ulery, A.L., Graham, R.C. and Amrhein, C., 1993. Wood ash composition and soil pH following intense burning. Soil Science, 156: 358-364.

Vélez, A., Guevara, G., Gómez, H. & Ovando, J., 2013. Rastrojo manejo, uso y mercado en el centro y sur de Mexico. En: Mexico: CIMMYT.

Wang XL, Yang ZL, Liu X. 2020. The composition characteristics of different crop straw types and their multivariate analysis and comparison. Waste Manag.110:87–97.

Wei HR, Wang YZ, Jin Z. 2021. Utilization of straw-based phenolic acids as a biofungicide for a green agricultural production. J Biosci Bioeng.131(1):53–60.

Xiang LL, Sheng HJ, Xu M. 2019. Reducing plant uptake of a brominated contaminant (2,2ʹ,4,4ʹtetrabrominated diphenyl ether) by incorporation of maize straw into horticultural soil. Sci Total Environ.663:29–37.

Xinghua, Li, Shuxiao W., LeiI D., Jiming H., Chao L., Yaosheng C., and Liu Y., 2007. Particulate and Trace Gas Emissions from Open Burning of Wheat Straw and Maize Stover in China. Environment Science Technology. 41, 6052-6058.

Xu J, Zong MH, Fu SY.2016. Correlation between physicochemical properties and enzymatic digestibility of rice straw pretreated with cholinium ionic liquids. ACS Sustain Chem Eng.4(8):4340–4345.

Xu P, Sun CX, Ye XZ. 2016. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol Environ Safety.132:94–100.

Xu X, Pang DW, Chen J.2018. Straw return accompany with low nitrogen moderately promoted deep root. Field Crops Res.221:71–80.

Yadav D, Vishwakarma AK, Sharma NK. 2021. Sustaining the properties of black soil in Central India through crop residue management in a conservationagriculture-based soybean–wheat system. Land Degrad & Dev.;16.

Yang HS, Li YF, Zhai SL. 2020. Long term ditch-buried straw return affects soil fungal community structure and carbon-degrading enzymatic activities in a rice-wheat rotation system. Appl Soil Ecol.155:9.

Yao L, Sa RL, Fan F. 2020. Allelochemicals: effects on growth characteristics of maize seeds and seedlings. Chin Agric Sci Bull.36(6):1–4.

Zermeño, I., Pingarroni, A. & Martínez, M., 2016. Agricultural land-use diversity and forest regeneration potential in human-modified tropical landscapes. Agriculture, Ecosystems, Volumen 230, p. 210–220.

Zhang H, Yang YX, Mei XY. 2020. Phenolic acids released in maize rhizosphere during maize-soybean intercropping inhibit phytophthora blight of soybean. Front Plant Sci.11:886.

Zhang HY, Pang HC, Zhao YG.2020. Water and salt exchange flux and mechanism in a dry saline soil amended with buried straw of varying thicknesses. Geoderma365:9.

Zhang SJ, Zhang G, Wang DJ.2021. Abiotic and biotic effects of long-term straw retention on reactive nitrogen runoff losses in a rice–wheat cropping system in the Yangtze Delta region. Agric, Ecosyst & Environ.305:10.

Zhao SC, Li KJ, Zhou W. 2016. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agri& Ecosyst Environ.216:82–88.

Zhao XL, Yuan GY, Wang HY. 2019. Effects of full Straw incorporation on soil fertility and crop yield in rice-wheat rotation for silty clay loamy cropland. Agronomy.9(3):12.

Zhao YG, Li YY, Wang J. 2016. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils. Soil Tillage Res.155:363–370.

Zheng Y, Han XR, Li YY. 2019. Effects of biochar and straw application on the physicochemical and biological properties of paddy soils in northeast China. SciRep.9(1):16531.

Abate, T., Shiferaw, B., Menkir, A., Wegary, D., Kebede, Y., Tesfaye, K., et al. (2015). Factors that transformed maize productivity in Ethiopia. Food Security 7, 965–981. doi: 10.1007/s12571-015-0488-z

Adiaha, M., Agba, O., Attoe, E., Ojikpong, T., Kekong, M., Obio, A., et al. (2016). Effect of maize (Zea mays L.) on human development and the future of man-maize survival: a review. World Sci. News 59, 52–62.

Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50:6182–6187.

Ahn J, Koo SI (1995a) Effects of zinc, and essential fatty acid deficiencies on the lymphatic absorption of vitamin A and secretion of phospholipids. J Nutr Biochem 6:595–603.

Ahn J, Koo SI (1995b) Intraduodenal phosphatidylcholine infusion restores the lymphatic absorption of vitamin A and oleic acid in zinc-deficient rats. J Nutr Biochem 6:604–612.

Arnold JM, Bauman LF, Aycock HS (1977) Interrelations among protein, lysine, oil, certain mineral element concentrations, and physical kernel characteristics in two maize populations. Crop Sci 17:421–425.

Badu-Apraku, B., and Fakorede, M. (2017). Maize in Sub-Saharan Africa: importance and production constraints, in Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa, eds Badu-Apraku, B., and Fakorede, M., (Cham: Springer), 3–10.

Barba, M. (2017). THINKBING. Obtenido de https://blogthinkbig.com/maiz-materia-biocombustibles.

Bouis EH (2002) Plant breeding: a new tool for fighting micronutrient malnutrition. J Nutr 132:491S–494S.

Boyer CD, Shannon JC (1982) The use of endosperm genes for sweet corn improvement. In: Janick J (ed) Plant breeding reviews, vol 1. AVI Publishing, Westport, pp 139–154.

Brites, C., Haros, C., Trigo, M & Islas, R. (2007). Maíz in De tales harinas, tales panes: granos, harinas y productos de panificación en Iberoamérica.

Butzen S, Haefele D (2008) Dry-grind ethanol production from corn. Crop Insights 18:01–05.

Calero, C. (2021). CALERO. Obtenido de https://www.calero-group.com/proceso-de-transformacion-del-maiz/.

Chen, D., Lan, Z., Hu, S., and Bai, Y. (2015). Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biol. Biochem. 89, 99–108. doi: 10.1016/j.soilbio.2015.06.028.

Davidsson L, Ziegler EE, Kastenmayer P, van Dael P, Barclay D (2004) Dephytinisation of soyabean protein isolate with low native phytic acid content has limited impact on mineral and trace element absorption in healthy infants. Br J Nutr 91:287–293.

Dormann P (2003) Corn with enhanced anti-oxidant potential. Nat Biotechnol 21:1015–1016.

Dowswell, C. R., Paliwal, R. L., and Ronald, P. C. (2019). Maize in the Third World. Boca Raton, FL: CRC Press.

Dowswell, C. R., Paliwal, R. L., and Ronald, P. C. (2019). Maize in the Third World. Boca Raton, FL: CRC Press.

Dreyfuss ML, Stoltzfus RJ, Shrestha JB, Pradhan EK, LeClerq SC, Khatry SK, Shrestha SR, Katz J, Albonico M, West KP Jr (2000) Hookworms, malaria and vitamin A deficiency contribute to anemia and iron deficiency among pregnant women in the plains of Nepal. J Nutr 130:2527–2536.

Dupont J, White PJ, Carpenter MP, Schaefer EJ, Meydani SN, Elson CE, Woods M, Gorbach SL (1990) Food uses and health effects of corn oil. J Am Oil Nutr 9:438–470.

ECKHOFF, S.R. 1S98, Recent advances in corn wet milllng. In Program Proceedings of the Corn Utilizalion & Technology Conference (1998, St Lois Missouri) p. 5-8.

Egli I, Davidsson L, Zeder C, Walczyk T, Hurrel R (2004) Dephytinisation of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults. J Nutr 134:1077–1080.

Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:S33–S50.

Evensen KB, Boyer CD (1986) Carbohydrate composition and sensory quality of fresh and stored sweet corn. J Am Soc Hortic Sci 111:734–739, FAO statistical yearbook 2012. World Food and Agriculture. http://www.fao.org/docrep/015/i2490e/i2490e00.htm.

Eyherabide, G.; Gómez. L.G. 1996 Situación yavances del subprograma maíz INTA -Argentina In Memorias, IV Reunión de Coordinadores Suramericanos de Programas de Maíz (1996, Cali. Colombia). Ed. by De León y Narro p. 6-17.

FAO Statistical Yearbook (2012) World food and agriculture. http://www.fao.org/docrep/015/i2490e/i2490e00.htm.

Fassio, A., Cozzolino, D., Bonjour, V., Pascal, A., Condón, F., & Delucchi, I. (2000). Maíz: variabilidad genética y usos alternativos del grano. INIA Serie Técnica.

Feila S, Mosera B, Jampatongb S, Stampa P (2005) Mineral composition of the grains of tropical maize varieties as affected by preanthesis drought and rate of nitrogen fertilization. Crop Sci 45:516–523.

Food Agricultural Organization of the United Nations (2017). Production Quantity of Maize, Green by Country. Available online at: http://www.fao.org/faostat/en/#data/QC/visualize.

Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265.

GOBIERNO DE MÉXICO. (2016). Obtenido de https://www.gob.mx/agricultura/es/articulos/industrializacion-del-maiz-mas-alla-de-la-tortilla-40879.

Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Res 60:57–80.

Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333.

Harris, D., Rashid, A., Miraj, G., Arif, M. y Shah, H. (2007). Cebado de semillas “en la finca” con solución de sulfato de zinc: una forma rentable de aumentar los rendimientos de maíz de los agricultores de escasos recursos. Investigación de cultivos de campo, 102(2), 119–127. https://doi.org/10.1016/j.fcr.2007.03.005.

Hess SY (2003) Interactions between iodine and iron deficiencies. Thesis/Dissertation, Swiss Federal Institute of Technology, Zurich,DissETHNo.15002.

Hess SY, Thurnham DI, Hurrell RF (2005) Influence of provitamin A carotenoids on iron, zinc and vitamin A status. HapvestPlus Technical Monograph series 6. HarvestPlus, Washington, DC, pp 28.

Hill, L.; Paulsen, M.; Bouzaher, A.; Patterson, M. Bender, K.; Kirleis.A. 1991 Economic evaluaton of quality characteristics in the dry milling of corn North Central Regional Research Publication 330 Illinois Agricultural Experimental Station Bulletin 804. 52p.

Hodges RE, Sauberlich HE, Canham JE, Wallace DL, Rucker RB, Mejia LA, Mohanram M (1978) Hematopoietic studies in vitamin A deficiency. Am J Clin Nutr 31:876–885.

Hoebler C, Karinthi A, Chiron H, Champ M, Barry JL (1999) Bioavailability of starch in bread rich in amylose: metabolic responses in healthy subjects and starch structure. Eur J Clin Nutr 53:360–366.

Hotz C, Brown K (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25(1):194–195.

INFOCAMPO. (05 de 12 de 2014). Obtenido de https://www.infocampo.com.ar/aplicaciones-del-maiz-en-la-industria-alimentaria/.

Jackson DS (1992) G92-1115 corn quality for industrial uses. Historical materials from University of Nebraska-Lincoln Extension. Paper 748. http://digitalcommons.unl.edu/extensionhist/748.

Katragadda HR, Fullana AS, Sidhu S, CarbonellBarrachina A A (2010) Emissions of volatile aldehydes from heated cooking oils. Food Chem 120:59–65.

Kawatra A, Sehgal S (2007) Value-added products of maize. Report of the national conference on doubling maize production, IFFCO Foundation, New Delhi, pp 76–85.

Kim ES, Noh SK, Koo SI (1998) Marginal zinc deficiency lowers the lymphatic absorption of alpha-tocopherol in rats. J Nutr 128:265–270

Kulp K (2000) Handbook of cereal science and technology, 2nd edn. Revised and Expanded, CRC Press, Boca Raton, p 808.

Kurilich AC, Juvik JA (1999) Quantification of carotenoid and tocopherol antioxidants in Zea mays. J Agric Food Chem 47:1948–1955.

Lambert RJ (2001) High-oil corn hybrids. In: Hallauer AR (ed) Specialty corns, 2nd edn. CRC Press, Boca Raton, pp 131–154.

Lonnerdal B (2002) Phytic acid–trace element (Zn, Cu,Mn) interactions. Int J Food Sci Tech 37:749–758.

Maida JM, Mathers K, Alley CL (2008) Pediatric ophthalmology in the developing world. Curr Opin Ophthalmol 19:403–408.

Mascia P.N.; Troyer, A.F. 1993. Designen Irails for Ihe ccm processIng industry In Program Praceedings of the Corrí Utilization & Technology Conference (1S98 SI Louis, Missouril) p 123-131.

Mendoza C, Viteri F, Lonnerdal B, Young KA, Raboy V, Brown KH (1998) Effect of genetically modified, lowphytic acid maize on absorption of iron from tortillas. Am J Clin Nutr 68:1123–1127.

Menkir A (2008) Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chem 110:454–464.

Mertz ET, Bates LS, Nelson OE (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145:279–280.

Moreno YS, Hernandez DR, Velazquez AD (2005) Extraction and use of pigments from maize grains (Zea mays L.) as colorants in yogurt. Arch Latinoam Nutr 55:293–298

Mosera, S., Jampatongb, B., Stampa, P (2005) Composición mineral de los granos de variedades de maíz tropical afectada por la sequía preantesis y la tasa de fertilización con nitrógeno. Crop Sci 45:516–523.

Motto M, Hartings H, Laura M, Rossi V (2005) Gene discovery to improve quality related traits in maize. In: Tuberosa R, Phillips RL, Gale M(eds) Proceedings of the international congress “In the wake of double helix: from the green revolution to the gene revolution”, Avena media, Bologna, pp 173–192, 27–31 May 2005.

Nelson O, Pan D (1995) Starch synthesis in maize endosperms. Annu Rev Plant Physiol Plant Mol Biol 46:475–496.

Oelofse A, Van Raaij JM, Benade AJ, Dhansay MA, Tolboom JJ, Hautvast JG (2002) Disadvantaged black and coloured infants in two urban communities in the Western Cape, South Africa differ in micronutrient status. Public Health Nutr 5:289–294.

Otsuka, K., and Muraoka, R. (2017). A green revolution for sub-Saharan Africa: past failures and future prospects. J. Afr. Econ. 26, 73–98. doi: 10.1093/jae/ejx010.

Palafox NA, Gamble MV, Dancheck B, Ricks MO, Briand K, Semba RD (2003) Vitamin A deficiency, iron deficiency, and anemia among preschool children in the Republic of the Marshall Islands. Nutrition 19:405–408.

Pathak P, Singh P, Kapil U, Raghuvanshi RS (2003) Prevalence of iron, vitamin A, and iodine deficiencies amongst adolescent pregnant mothers. Indian J Pediatr 70:299–301.

Pomeranz Y. 1987. Modern cereal science and technology. VCH Publishers, Inc. Nueva York, USA. Pág. 29-30.

Prasanna BM, Vasal SK, Kassahun B, Singh NN (2001) Quality protein maize. Curr Sci 81:1308–1319.

Preetha, P S , Stalin P (2014). Response of Maize to Soil Applied Zinc Fertilizer under Varying Available Zinc Status of Soil. Indian Journal of Science and Technology, 7 : 939-944.

Reardon, T., Echeverria, R., Berdegué, J., Minten, B., Liverpool-Tasie, S., Tschirley, D., et al. (2019). Rapid transformation of food systems in developing regions: highlighting the role of agricultural research & innovations. Agric. Syst. 172, 47–59. doi: 10.1016/j.agsy.2018.01.022.

Rekha, R., and Singh, P. (2018). Futures trading of maize in India: a tool for price discovery and risk management. Int. Res. J. Agric. Econ. Stat. 9, 113–119. doi: 10.15740/HAS/IRJAES/9.1/113-119.

Rice AL, West KP, Black RE (2004) Vitamin A deficiency. In: Ezzati M, Lopez AD, Rodgers A, Murray CJL (eds) Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors, vol 1. World Health Organization, Geneva.

Riley C, Wheatley A, Asemota H (2006) Isolation and Characterization of starch from eight Dioscorea alata cultivars grown in Jamaica. Afr J Biotechnol 15 (17):1528–1536.

Sen A, Bergvinson D, Miller S, Atkinson J, Gary FR, Thor AJ (1994) Distribution and microchemical detection of phenolic acids, flavonoids, and phenolic acid amides in maize kernels. J Agric Food Chem 42:1879–1883.

Singh N, Singh J, Kaur L, Sodhi NS, Gill BS (2003) Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem 81:219–231.

Topping DI, Clifton PM(2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064.

Ullah I, Ali M, Farooqi A (2010) Chemical and nutritional properties of some maize (Zea mays L.) varieties grown in NWFP, Pakistan. Pak J Nutr 9 (11):1113–1117.

Van Soest PJ, Fadel J, Sniffen CJ (1979) Discount factors for energy and protein in ruminant feeds. In: Proceedings, Cornell nutrition conference for feed manufacturers, Ithaca, Cornell University, pp 63–75.

Vandeputte GE, Vermeylen R, Geeroms J, Delcour JA (2003) Rice starches. III. Structural aspects provide insight in amylopectin retrogradation properties and gel texture. J Cereal Sci 38:61–68.

Vasal SK (2000) The quality protein maize story. Food Nutr Bull 21:445–450.

Vikal Y, Chawla JS (2014). Molecular interventions for enhancing the protein quality of maize. In: Chaudhary D et al (eds) Maize: nutrition dynamics and novel uses. Springer, Berlin, pp 49–61.

Watson SA (1987) Structure and composition. In: Watson SA, Ramstad PE (eds) Corn: chemistry and technology. American Association of Cereal Chemists, St Paul, pp 53–82.

Watson, S.A.; Ramstad, P.E. 1987. Corn Chemistry and technology American Association of Cereal Chemist, Inc. Sí Paul Minessota, USA 499 p.

Wilson CM, Shewry PR, Miflin BJ (1981) Maize endosperm proteins compared by sodium dodecyl gel electrophoresis and isoelectric focussing. Cereal Chem 58:275–281.

Yadav, O., Prasanna, B., Yadava, P., Jat, S., Kumar, D., Dhillon, B., et al. (2016). Doubling maize (Zea mays) production of India by 2025-challenges and opportunities. Indian J. Agric. Sci. 86, 427–434.

Yang G, Dong Y, Li Y, Wang Q, Shi Q, Zhou Q (2013) Verification of QTL for grain starch content and its genetic correlation with oil content using two connected RIL populations in high oil maize. PlosOne 8(1):e53770. doi:10.1371/journal.pone.0053770.

Yuan Y, Zhang L, Dai Y, Yu J (2007) Physicochemical properties of starch obtained from Dioscorea nipponica Makino comparison with other tuber starches. J Food Eng 82:436–442.

Acosta, R. (2009). El cultivo de maíz, su origen y clasificación. El maíz en Cuba. Cultivos Tropicales, 113-120.

Afriyie, C., Sarkodie, J., Nketiah, J., Francisco , P., & Obeng, E. (2018). Determine the Relationship between the Performance of the Maize Varieties and Their MultiEnvironment Status. Asian Journal of Research in Crop Science, 1-9.

Agritotal, 2015. Forrajes de calidad. [En línea] Available at: http://www.agritotal.com/nota/forrajes-de-calidad/.

Allen MS, Coors JG, Roth GW (2003) Corn silage. In:Buxton DR, Muck R, Harrison J (eds) Silage science and technology. ASA, CSSA, and SSSA, Madison, pp 547–608

Álvarez, J., 2016. ¿Cuáles son los planes de control necesarios para el almacenamiento de maíz en un silo metálico?. [En línea] Available at: https://siloscordoba.com/es/blog-es/almacenaje-degrano/almacenamiento-de-maiz-silo-metalico/.

Andrade, F. (1992). Radiación y temperatura determinan los rendimientos máximos de maíz. Balcarce, Buenos Aires, Argentina: Estación Experimental Agropecuaria Balcarce (INTA).

Arista, J., Quevedo, A., Zamora, B., Bauer , R., Sonder, K., & Lugo , O. (2018). Temperaturas base y grados días desarrollo de 10 accesiones de maíz de México. Revista Mexicana de Ciencias Agrícolas, 9(5), 1023-1033.

Blanco, 2017. Manejo oportuno de los arvenses en sus relaciones interespecificas conlos cultivos del maíz (Zea mays l.) del frijol (Phaseolus vulgaris L) en un sistema sucesional. La Habana: Editorial Universitaria. ISBN 978-959-16-3767-3 Available at: https://ebookcentral.proquest.com/lib/upsesp/reader.action?docID=5214259&query=Clasificaci%25C3%25B3n%2Btaxon%25C3%25B3mica%2Bdel%2Bcultivo%2Bde%2Bma%25C3%25ADz%2B.

Bragachini, M., Gallardo, M., Peireti, J., Bianco, M., & Cattani, P. (2011). Forrajes conservados de alta calidad y aspectos relacionados al manejo nutricional. Manual Teórico N6.: INTA –PRECOP II.

Cabrales, R., Montoya, R., & Rivera , J. (2007). Evaluación agronómica de 25 genotipos de maíz (Zea maíz L) con fines forrajeros en el valle del Sinú medio. Revista MVZ Córdoba, 1054-1060.

Caibor, B. (2016). Determinación de dosis óptima fisiológica y económica de nitrógeno en dos híbridos de maíz (Zea mays L.), en la zona de Boliche. Tesis de Ingeniero Agrónomo. Universidad de Guayaquil, 68 p.

Callacná, M., León, Z., & Mendoza, G. (2014). Características nutritivas del ensilaje mixto de maíz chala (Zea mays l.) y broza de esparrago (Asparragus officinalis) con melaza – urea e inóculo bacterial como suplemento alimenticio para cabras en manejo semi extensivo. SCIENDO, 40-50.

Carter PR, Coors JG, Undersander DJ, Albrecht KA, Shaver RD (1991) Híbridos de maíz para ensilaje: una actualización. Roth. En: Procedimiento. de la conferencia anual de investigación de maíz y sorgo, 46th. chicago Asociación Americana de Comercio de Semillas, Washington DC. págs. 141–164 Chaudhary DP, Kumar.

Casini, C., 2009. Conservación de Granos, Almacenamiento tradicionales y en bolsas

Cattani P, 2009. ¿Maíz Pasado?, no se preocupe no es tan grave producir. s.l.:s.n. Cattani, P., Bragachini, M. & Peiretti, J., 2010. El tamaño de picado como factor de calidad en el silo. [En línea] Available at: http://www.cosechaypostcosecha.org/data/articulos/cosecha/tamanioDePicado.asp.

Cattani P, 2009. ¿Maíz Pasado?, no se preocupe no es tan grave producir. s.l.:s.n.

Chaudhary, DP, Jat, SL, Kumar, R., Kumar, A., Kumar, B. (2014). Calidad forrajera del maíz: su conservación. En: Chaudhary, D., Kumar, S., Langyan, S. (eds) Maíz: dinámica nutricional y nuevos usos. Springer, Nueva Delhi. https://doi.org/10.1007/978-81-322-1623-0_13.

Contreras , A., Martínez, C., & Estrada , G. (2012). Eficiencia en el uso de la radiación por híbridos de maíz de valles altos México. Revista Fitotecnica Mexicana, 161–169.

Cruz , D., & Regazzi, A. (2001). Modelos biométricos aplicados ao melhoramento genético. Universidade Federal de Vicosa (2da. ed.). Vicosa, Minas Gerais, Brasil: UFV.

David B. (2008). Manuales para educación agropecuaria. Maíz. Área: producción vegetal 10. Mexico- Trillas. Tercera edición. ISBN: 978-968-24-8101-7.

Deras, H. (2012). Guia técnica: El cultivo de maíz . El Salvador: CENTA.

Demanet, F.R., 2014. Manual de Especies Forrajeras. Plan Lechero Watt´s, CORFO, Universidad de La Frontera. Osorno, Chile. 163 p.

EL MERCURIO, 2013. Precios de forrajes y ensilajes de maíz para ganaderos, s.l.: s.n

Elizondo, J. (2011). Influencia de la variedad y la altura de cosecha sobre el rendimiento y valor nutritivo de maíz para ensilaje. Agronomía Costarricense, 35(2), 105-111.

Elizondo, J. (2017). Producción de biomasa y calidad nutricional de tres forrajes cosechados a dos alturas. Agronomia Mesoamericana, 329-340.

Encuesta de superficie y producción agropecuaria continua [Internet]. Instituto Nacional de Estadísticas y Censos. 2018. Recuperado a partir de: https://www.ecuadorencifras.gob.ec/encuesta-de-superficie-y-produccion-agropecuaria-continua-bbd/ [ Links ].

FAO. (2016). Forraje verde hidropónico. Organización de las naciones unidas para la agricultura y la alimentación, 55.

Farinango, D., 2015. “primer ciclo de mejoramiento genético de maíz (Zea mays L.)“. [En línea] Available at: http://dspace.espoch.edu.ec/bitstream/123456789/4266/1/13T0810.pdf.

Francesa, U., 2017. La Fibra en Forrajes Tropicales. Parte 1.- Factores que afectan su Digestibilidad. [En línea] Available at: La Fibra en Forrajes Tropicales. Parte 1.- Factores que afectan su Digestibilidad.

Garcés, 2010. Ensilaje como fuente de alimentación para el ganado. [En línea] Available at: http://www.lasallista.edu.co/fxcul/media/pdf/Revista/Vol1n1/06671%20Ensilaje%20como%20fuente%20de%20alimentaci%C3%B3n%20para% 20el%20ganado.pdf.

García , Á., Thiex, N., Kalscheur, K., Tjardes, K., & Dakota, S. (2019). Interpretación del análisis del ensilaje de maíz. Recuperado el 14 de Abril de 2020, de Dairy Cattle: https://dairy-cattle.extension.org/.

García, A. (2015). Efecto de abonos orgánicos en el rendimiento y calidad del forraje verde hidropónico. México.

Gardner, F., Brent, R., & Mitchel, R. (1985). Carbon fixation by crop canopies. En I. S. Press, Physiology of Crop Plants (págs. 31-57). Iowa: Iowa State University Press.

Gaytán, Martínez, Mayek, N., 2009. Rendimiento de Grano y Forraje en Híbridos de Maíz y su Generación Avanzada Pag: 295 -304. s.l.:s.n

Glanze, P. (2015). El maíz de grano, producción mecanizada de maíz y granos en las regiones tropicales y subtropicales. Ediciones Euroamericanas. Klauss Thiele. México, 125p.

Gómez, A., Sanginés, L., Hernández, J., & Benítez, J. (2015). Evaluación químico proximal de ensilado de maíz (variedad DK2034) en diferentes tiempos de fermentación. EDUCATECONCIENCIA, 63-68.

Granados, R., & Sarabia, A. (2013). Cambio climático y efectos en la fenología del maíz en el DDR-Toluca. Revista Mexicana de Ciencias Agrícolas, 435-446.

Gupta BK, Bhardwaj BL, Ahuja AK (2004) Nutritional value of forage crops of Punjab. Punjab Agricultural University Publication, Ludhiana.

Harfoot, C., & Hazlewood, G. (1988). Lipid metabolism in the rumen. (P. Hobson, Ed.) Elsevier Applied Science, 285-322.

Hatfield, J., & Dold, C. (2018). Climate Change Impacts on Corn Phenology and Productivity. En J. Hatfield, & C. Dold, Corn - Production and Human Health in Changing Climate (págs. 95-114). IntechOpen.

Heemst, H. (1986). The distribution of dry matter during growth of a potato crop. Potato Res, 29, 55-66.

Hortelano , R., Villaseñor, H., Martínez, E., Rodríguez , M., Espitia, E., & Mariscal, L. (2013). Estabilidad de variedades de trigo recomendadas para siembras de temporal en los Valles Altos de la Mesa Central. Revista Mexicana de Ciencias Agrícolas, 4(5), 713-725.

INIAP, 2010. Ficha Tecnica de produccion Variedad de Maiz Blanco 103, Repositorio digital, Cuenca: s.n.

INIAP. (2011). Manejo Integrado del cultivo de maíz suave. Instituto Nacional de Investigaciones Agropecuarias, Módulo IV.

INTAGRI, 2017. la fenología del maíz y su relación con la insidencia de plagas. [En línea] Available at: https://www.intagri.com/articulos/fitosanidad/la-fenologia-del-maiz-ysu-relacion-con-la-incidencia-de-plagas.

INTAGRI. (2018). Densidad de siembre en el cultivo de maíz. Obtenido de https://www.intagri.com/articulos/nutricion-vegetal/densidadde-siembra-en-elcultivo-de-maiz.

INTAGRI. 2018. Plantas C3, C4 y CAM. Serie Nutrición Vegetal, Núm. 125. Artículos Técnicos de INTAGRI. México. 5 p.

Iqbal A, Ayub M, Zaman H, Ahmed R (2006) Impact of nutrient management and legume association on agroqualitative traits of maize forage. Pak J Bot 38:1079–1084.

Klein, F. (1988). Avena y maíz para ensilaje. En: “Seminario para agricultores sobre conservación de forrajes para uso animal”. Osorno, Chile: Instituto de Investigación Agropecuarias (INIA). Estación Experimental Remehue.

Linares, J., 2016. Maíz mejor momento de corte de planta entera?. [En línea] Available at: https://www.engormix.com/ganaderia-carne/foros/maiz-mejormomento-corte-t26586/.

Lino, A. (2014) Ensilaje en bolsas, alternativa para pequeños ganaderos. [En línea] Available at: https://padrecitozesati.files.wordpress.com/2015/02/ensilaje-enbolsas.pdf.

Lutt, N., Jeschke, M., & Strachan, S. (2016). High Night Temperature Effects on Corn Yield. Recuperado el 29 de junio de 2019, de PIONEER: https://www.pioneer.com/home/site/us/agronomy/library/night-temperatureeffects-corn-yield/.

Macay, M., 2015. Tesis de grado Identifico uno entre cuatro Híbridos de Maíz, para ser utilizado como para alimentación de ganado lechero en el Cantón Nobol de la Provincia del Guayas. [En línea]. Available at:http://repositorio.ucsg.edu.ec/bitstream/3317/4104/1/T-UCSG-POS-MSPA7.pdf.

Maizar. (2015). Estadísticas maíz/sorgo. Disponible en: http://www.maizar.org.ar/estadisticas.php.

Manrique, L., & Bartholomew, D. (1991). Growth and yield performance of potato grown at three elevations in Hawaii: II. Dry matter production and efficiency of partitioning. Crop Sci, 367–372.

Marsalis MA, Angadi SV, Contreras-Govea FE (2010) Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crop Res 116:52–57.

Méndez, M., 2017. Poetencial forrajero de cuatro variedades costarricenses de maíz (Zea mayz) evaluadas a diferentes densidades de siembra en Santa Lucia, Barva de Heredia. [En línea] Available at: https://www.repositorio.una.ac.cr/bitstream/handle/11056/14189/Tesis%20Lista.%20Recomendaciones%20Tri,%20Tut.pdf?sequence=1&isAllowed=y&fbclid=IwAR1KXAEfFS_y7P8zutppfoPGOtb67OTBgub5LUimpYhCsHdXlRi3szArCBY.

Mendoza, E., Bravo, M., Muñoz, C., Diaz, L., & Carpio, C. (2018). Evaluación de la calidad nutricional de los ensilajes en bolsa de los híbridos de maíz Somma y Trueno aplicando dos aditivos en la zona de Colimes. Espirales, 2(15), 137-153.

Mier, M., & Monroy, A. (2017). Caracterización del valor nutritivo y estabilidad aeróbica de ensilados en forma de microsilos para maíz forrajero. Quito, Ecuador: PUCE.

Mineral. (2012). Solución hidropónica. Universidad Nacional Agraria La Molina, Lima Perú.

Monsanto (2017). Manejo del ensilado de maíz. Manejo del cultivo. [En línea] Available at: https://www.dekalb.es/maiz-silo/manejo-del-cultivo-de-maiz/manejodel-ensilaje-de-maiz.

Montecor, 2017. Tecnología de picado para ensilado de cultivo de maiz. [En línea] Available at: http://henificaciondeprecision.com/picadoras-tecnologia-ensilado-maiz/.

Olivas, P., Oberbauer, D., Clark, M., Ryan , J., O´Brein, J., & Ordóñez , H. (2013). Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape. Agricultural and Forest Metereology, 177, 110-116.

Oñate L., 2016. "Duración de las etapas fenológicas y profundidad radicular del cultivo de maíz (zea mays) var. Blanco harinoso criollo, bajo las condiciones climáticas del cantón cevallos" [En línea] Available at: http://repositorio.uta.edu.ec/bitstream/123456789/18305/1/Tesis116%20%20Ingenier%C3%ADa%20Agron%C3%B3mica%20-CD%20371.pdf?fbclid=IwAR1yx3NdCffiECHMtvEG6jQs_Piu_UgeevTsowejILXe-4xyjmsIg8UjwM.

Ortega, I. (2014). Maíz I (Zea mays). En E. Urria, Reduca (Biologia) (págs. 151-171). Madrid, España: Universidad Complutense de Madrid.

Ortigoza, J., López , C., & Gonzalez, J. (2019). Guía técnica cultivo de maíz. San Lorenzo: FCA, UNA.

Paliwal R.L. (2001). Tipos de maíz. El maíz en los trópicos: mejoramiento y producción.

Peñaherrera, D., 2011. Manejo integrado de Maíz de altura. [En línea] Available at: http://repositorio.iniap.gob.ec/bitstream/41000/3302/1/iniapscpm190.pdf?fbclid=IwAR3x7jIo_BxnWP7XqsiKG1V-U7uH4d2xBEgKBNefdLX5TocfHPQ5RdG1LcM.

Perrin, R. J. (2018). From Agronomic Data Farmer Recommendations. An Economic Training Manual. CIMMYT: Mexico, D.F, http://www.cimmyt.org.

Perrin, R., & Jock , A. (2018). From Agronomic Data Farmer Recommendations. An Economic Training Manual. CIMMYT: Mexico, D.F, http://www.cimmyt.org.

Piñeiro, G., 2006. cuidados en la confección de los silos de maíz. [En línea] Available at: https://www.engormix.com/ganaderia-carne/articulos/silos-de-maizt26655.htm.

Plascencia, A., Mendoza, G., Vásquez, C., & Avery, R. (2005). Factores que influyen en el valor nutricional de las grasas utilizadas en las dietas para bovinos de engorda en confinamiento. Interciencia, 30(3), 134-142. Recuperado el 15 de abril de 2020, de http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442005000300006&lng=es&tlng=es.

Reif, J., Hallauer, A., & Melchinger, A. (2005). Heterosis and heterotic patterns in maize. Maydica, 50, 215-223.

Reta S D., J. Carrillo S., A. Gaytán M., E. Castro M. y J. A. Cueto W. 2002. Guía para cultivar maíz forrajero en surcos estrechos. INIFAP-CIRNOCCELALA. Matamoros, Coahuila. México.

Romero, L. & Aronna, S., 2004. Siembra de maíz para ensilaje. [En línea] Available at: http://rafaela.inta.gov.ar/info/documentos/cfc/doc2.pdf.

Ruíz , C., Sánchez , J., & Goodman, M. (1998). Base temperature and heat unit requirement of 49 mexican maize races. Maydica, 43, 277-282.

Salinas, 2011. Caracterización de cultivares. Maíz sorgo. 1ª ed. 70 p. ISBN 978-987-62-9. Available at:https://ebookcentral.proquest.com/lib/upsesp/reader.action?docID=3198367&query=Fibra%2Bdetergente%2B%25C3%2581cido%2B%2528FDA%2529%2Ben%2Bmaiz.

Santini, F., 2013. Uso de maíz en sus varios en la alimentación de vacunos para carne en pastoreo y feedlot. [En línea] Available at: https://www.agrositio.com.ar/noticia/53092-uso-del-maiz-en-sus-varios-tipos-en-la-alimentacion-de-vacunos-para-carne-en-pastoreo-y-feedlot.

Sattar MA, Haque MF, Rahman MM (1994) Cultivos intercalados de maíz con arroz al voleo en diferentes espacios entre hileras. BangladeshJ Agric Res 19:159–164.

Singh KA (2009) Feed and fodder development issues and options. In: Das N, Misra AK, Maurt SB, Singh KK, Das MM (eds) Forage for sustainable livestock production. SSPH, New Delhi, pp 1–12.

Soto, P., Jhan, E., & Arredondo, S. (2004). Mejoramiento del porcentaje de proteína en maíz para ensilaje con el aumento y parcialización de la fertilización nitrogenada. Agricultura Técnica, 64(2), 156-162. doi:10.4067/S0365-28072004000200004.

Suárez, A., & Geronimo, L. (2012). Intercepcion de radiacion fotosinteticamente activa como factor determinante de densidad optima en cultivares de maíz (Zea mays L.). INTA.

Vargas, C. (2008). Comparación productiva de forraje verde hidropónico de maíz, arroz y sorgo negro forrajero. Agronomía Mesoamericana, 233-240.

Wagner, B., Asencio, V. & Caridad, J., 2016. Conservación del forraje. [En línea] Available at: http://190.167.99.25/digital/Idiaf.Ensilaje.1.pdf.

Zambrano, C., 2018. FASES DE CRECIMIENTO DE MAÍZ. [En línea] Available at: http://agrocarloszambrano.blogspot.com/2018/01/fases-de-crecimientodel-maiz.html.

Zaragoza, J., Tadeo, M., Espinoza, A., Lopez, C., Garcia, J., Zamudio, B., . . . Rosado, F. (2019). Rendimiento y calidad de forraje de híbridos de maíz en Valles Altos de México. Revista Mexicana de Ciencias Agrícolas, 10 (01), 101-111.

Descargas

Publicado

febrero 15, 2023

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.